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Introduction 

 

 

 

Markov chains have several advantages as mathematical models. They 

are general enough to provide useful models for many situations. They 

have many results that are known, and they are easy to use.  The diversity 

of applications can be illustrated with a few examples. Some of which are 

in Psychology learning, Demography, Biology, Ecological systems and 

more. The ease of use is a consequence of using matrix algebra. 
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Chapter 1 

 

 

STATES AND TRANSITION MATRICES 

 

 

 

Stochastic process deal with number of successive steps or stages, each 

stage has different states and. In general, the probabilities of the results at 

one stage depend on the results of preceding stages and this dependence 

can take many forms. For example, tree diagrams for three experiments 

each consisting of repetitions of a sub-experiment with results labeled X 

and Y are shown in figure1. Notice that in each stage the sum of the 

probabilities to the right of the stage is 1. 

 

 

Figure1 
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Definition 1.1 

A Markov chain is a stochastic process which satisfies the condition: 

1. At each stage the result is one of a fixed number of states. 

2. The conditional probability of a transition from any given state 

to any other state depends on only the two states satisfy the 

following conditions: 

(i) At each stage the result is one of a fixed number of states 

(ii) The conditional probability of a transition from any given state 

to any other state depends on only the two states. 

 

Example 1.2 

A freelance computer network consultant is employed only when she has 

a contract for work, and each of her contracts is for 1 week of work. Each 

week she is either employed (E) or unemployed (U) and her records 

support the following assumptions about the conditional probabilities 

 (a) If she is employed this week then next week, she will be employed 

with probability 0.8 and unemployed with probability 0.2.  

(b) If she is unemployed this week then next week,  she will be employed 

with probability 0.6 and unemployed with probability 0.4. (see Figure2) 

 

Figure2 

If she is employed this week, what is the probability that she will be 

employed 2 weeks from now? A tree diagram for this situation is shown 

in Figure2. Since we know that she is employed this week the Begin box 

of the tree diagram is replaced by E. From the tree diagram we conclude 

that the probability that she is employed 2 weeks from now is  

0.64+0.12 = 0.76  
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However, if we had asked for the probability that she will be employed in 

5 weeks or in 10 weeks or in the long run, then we need to develop 

techniques which will be more effective in such problems. We need to 

have new terminology and notation and will be concerned with systems 

which can be in any one of N possible states.  

In Figure2, we have indicated states E and U and on arrows connecting 

the states, the probabilities of being in successive states on successive 

observations. For instance, the 0.2 on the arrow directed from E to U 

means that if the system is in state E on one observation, then it is in state 

U on the next observation with probability 0.2. As we noted in the 

definition of Markov chains, the fundamental property which 

distinguishes a Markov chain from other sequential probabilistic 

processes can be described as follows. 

 

Markov Property 

 If a system is in state on one observation, then the conditional probability 

that it is in state on the next observation depends on only and not on what 

happened before the system reached state or on the stage of the 

experiment. This probability will be denoted by 𝑃𝑖𝑗 , the probability of 

making a direct transition from i to j. 

One way that this property can be viewed intuitively is to think of 

Markov chains as mathematical descriptions for systems without 

memories. That is the probability that the system makes a transition from 

one state (say, state i) to another state (or even back into state) depends 

on the two states and not on the number of transitions or the states 

occupied before the system reached state i. The transition probabilities 𝑃𝑖𝑗 

are the numbers on the arrows of the transition diagram. Thus, in 

Example 1.2, if we label state E by 1 and state U by 2, then 𝑃11= 0.8 and 

𝑃12= 0.2. 

 

Transition Matrix  

Consider a Markov chain with N states. Let 𝑃𝑖𝑗 be the probability of 

making a direct transition from state i to state j. So, we have 1 ≤ 𝑖 ≤

𝑁 , 1 ≤ 𝑗 ≤ 𝑁. Consider the matrix 𝑃 = [𝑃𝑖𝑗]. This matrix is called the 

transition matrix for the Markov chain. 

 

Example 1.3 

Find the transition matrix for the process described in Example 1.2. 
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 To solve this problem, let E and U be labeled as states 1 and 2, 

respectively. The transition probabilities are given on the transition 

diagram in Figure3.  

 

Figure3 

And the matrix is 

𝑃 = [
. 8  .2  
. 6  .4  

]. 

 

Note that if we had labelled the states differently, then we would have 

obtained a different transition matrix 𝑃. However, providing the 

identification of states with rows and columns is consistent, then all 

probabilities computed for the process will be the same, regardless of the 

transition matrix used. 

Example 1.4.  

Consider the tree diagram in Figure4. Is this a diagram of a Markov 

chain? 

The states are labelled A and B in Figure4. Note that the probability of 

making a transition from A to A at stage I is 
1

3
 , the probability of making 

a transition from A to A at the second stage is 
1

3
, and the probability of 

making a transition from A to A at the third stage is 
1

5
 . Thus, the 

probability of making a transition from A to A does depend on the stage, 

and consequently this is not the tree diagram of a Markov chain. 
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Figure4 

Example 1.5.  

The dispatcher in the office of the White Wheel Taxi Company 

frequently contacts a driver who is away from the office by radio with the 

name and address of the next customer. For reasons of efficiency the 

dispatcher attempts to contact a driver who is, or who will be, in the same 

area as the person requesting a taxi. Of course, it may not be possible to 

do so. One of the drivers keeps a record of radio dispatches for a week, 

and the data are as in table1. 

 

Table1 

To formulate this as a Markov chain, we must identify the states of the 

system. We suppose that the service area can be divided into three 

districts: East, Central and West. If the driver is in the East district, then 

we say that the system is in state 1. Similarly, the system is in states 2 or 

3 when the driver is in the Central or West district, respectively. 

Transitions are the moves of the driver that result from calls by the 

dispatchers who provide locations of new customers. Using the data 

contained in Table1, we have the transition diagram shown in Figure5, 

and the transition matrix 𝑃. 
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Figure5 

𝑃 = [
. 5  .4  .1  
. 1  .6  .3  
. 3  .6  .1  

]  

 

Decision problems of resource allocation and scheduling such as the 

dispatching of taxis in Example 8.4 arise in many different settings and 

they can be studied using a variety of techniques The approach used 

normally depends on the specific goals and constraints of the study 

(resources available, customer service expectations, cost, etc.) For 

instance, rather than depending only on driver location the dispatcher 

may consider the priority of the customer the type of vehicle each driver 

has, the experience of the driver whether the driver s shift is about to end 

and so forth. 
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Chapter 2 

 

 

BASIC PROPERTIES OF MARKOV CHAINS 

 

 

 

 

We have seen that information about transitions in a Markov chain whose 

transitions are possible, and their probabilities can be given in a transition 

diagram or a transition matrix. For computational purposes, the transition 

matrix is often the most useful. The transition matrix for a Markov chain 

with N states, introduced in chapter 1, is an N × N matrix whose (i, j) 

entry is the probability of a transition from state i to state j in one step. 

There are corresponding probabilities for transitions from one state to 

another in k steps; these are usually called k-step transition probabilities. 

The conditional probability of making a transition from state i to state j in 

exactly k steps is denoted by 𝑃𝑖𝑗(𝑘). The matrix whose (i , j) entry is 

𝑃𝑖𝑗(𝑘) is denoted by P(k) and will be called the k-step transition matrix 

for a Markov chain. 

 

Example 2.1.   

Use tree diagrams to find the two-step transition matrix 𝑃 (2) for the 

transition matrix 

 

𝑃 = [ 
. 8  .2  
. 6  .4  

]. 

 

To determine the first row of 𝑃 (2), we use a tree diagram which 

represents a two-stage experiment in which the system is initially in state 

1. Such a tree diagram is shown in Figure6a.  
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Figure6 

From this tree diagram we see that a transition from state 1 to state 1 in 

two steps can occur in either of two ways, and the probability 𝑝11 (2) is 

the sum 

𝑃11(2) = .64+12= .76 

 

Similarly 

 

𝑃12 (2) =.16+.08=.24 

 

To determine the second row of P(2), we use a tree diagram in which the 

system is initially in state 2, Figure6b in this case. We have 

 

𝑃21(2) =.48+.24=.72 

𝑃22(2) =.12+.16=.28 

 

Therefore 

 

𝑃 (2) = [
 𝑃11(2)  𝑃12(2)  

𝑃21(2)  𝑃22(2)  
]    =[ 

. 76  .24  

. 72  .28  
] 

 

The technique illustrated in Example 8.5 can be used to construct 𝑃 (2) 

for any Markov chain for which the transition matrix 𝑃 can be 

determined. However, for large matrices the process is cumbersome, and 

one of the very useful properties of Markov chains is that there is a 

simple method of finding 𝑃 (2) from 𝑃 without using tree diagrams. The 

idea behind the method can be seen by looking more carefully at the 

calculation of 𝑃12(2) in Example 2.1. Using the tree diagram, we found 

 

𝑃12 (2) = .8(.2)+.2(.4)= 𝑃11𝑃12 + 𝑃12𝑃22 

 

This last expression is exactly the (1,2) entry in the matrix product 𝑃𝑃.  
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Now let us look at a similar argument in the case of a Markov chain with 

N states and transition matrix 𝑃. We find an expression for 𝑃𝑖𝑗(2): the 

probability that if the system is in state i on one observation, then it is in 

state j on the second subsequent observation. The system can move from 

state i to state j in two steps by moving from i to 1 to j. This happens with 

probability 𝑃𝑖1 𝑃1𝑖. Recall that the probability that the system makes a 

transition from state 1 to state j in one step is independent of the states it 

occupied before state 1. Likewise, the system can move from state i to 

state j through any of states 2, 3,..., N. These events happen with 

probabilities 𝑃𝑖2 𝑃2𝑗  , 𝑃𝑖3 𝑃3𝑗  , … . , 𝑃𝑖𝑁 𝑃𝑁𝑗, respectively. Since the system 

must move from state i to state j through exactly one intermediate state, 

we have 

 

𝑃𝑖𝑗  (2) =  𝑃𝑖1𝑃1𝑗 + 𝑃𝑖2𝑃2𝑗 + 𝑃𝑖3𝑃3𝑗 + ⋯+ 𝑃𝑖𝑁𝑃𝑁𝑗 

This expression for 𝑃𝑖𝑗(2) is exactly the (i, j) entry in the matrix product 

PP. We have the result 

𝑃(2) = 𝑃𝑃 = 𝑃2 

This is a special case of the following more general result. And we come 

up with the following statement. 

 

Theorem 2.2.   

Let P be the (one-step) transition matrix for a Markov chain. Then the 

matrix P(k) of k-step transition probabilities is 

 

𝑃(𝑘) = 𝑃𝑘. 
                                              

Example 2.3.   

To compute 𝑃 (2) using Theorem 2.2, we just multiply 𝑃 by itself to get 

𝑃(2) = [
. 8  .2  
. 6  .4  

]
2

=[
. 8  .2 
 .6   .4  

] . [
 .8  .2  
. 6  .4 

]= [
. 76  .24  
. 72  .28  

]. 

 

Notice that this is exactly what we have got earlier. 

 

Example 2.4.   

A Markov chain has transition matrix 
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𝑃 = [
. 3  .3  .4  
. 5  .5  .0  
1   0   0 

] 

Find the two-step transition matrix P(2). And If the system is initially 

observed in state 1, what is the probability that it is in state 1 two 

observations later? 

We apply Theorem2.2 to get 

𝑃(2) = 𝑃2 = [
. 3  .3  .4  
. 5  .5   0  
1   0   0 

]

2

= [
. 64  .24  .12  
. 4     .4    .2  
. 3     .3    .4  

] 

The second question is merely 𝑃11(2), that is 0.64. 

 

Example 2.5.   

 

Figure7 

 

This transition diagram for a Markov chain has a transition matrix 

 

 Problem  

Find the matrix of three-step transition probabilities for this Markov chain 

 

𝑃 = [

1

4
    

3

4
   0  

0     0    1  
1

2
    0   

1

2
  

]. 
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And the three-state transition matrix is 

𝑃(3) = 𝑃3 = 𝑃𝑃2 = [

1

4
     

3

4
    0  

0      0    0   
1

2
     0    

1

2
  

]

[
 
 
 
 

1

16
   

3

16
   

3

4
   

1

2
      0     

1

2
    

3

8
      

3

8
      

1

4
   ]

 
 
 
 

=

[
 
 
 
 
25

64
   

3

64
  

36

64
   

3

8
      

3

8
     

1

4
 

14

64
   

18

64
   

1

2
   

   ]
 
 
 
 

. 

 

A probability vector is a vector with nonnegative coordinates for which 

the sum of the coordinates is 1 and apparently each row of a transition 

matrix P of a Markov chain is a probability vector. Likewise, for each k 

the rows of matrix 𝑃(k) are probability vectors. Indeed, the entries of the 

𝑖th row of 𝑃(k) are the   probabilities 𝑃𝑖1(𝑘), 𝑃𝑖2(𝑘), … . , 𝑃𝑖𝑁(𝑘) , and the 

system must move from state i to some state (perhaps i itself) in k steps. 

 

Theorem 2.6. 

If 𝑃 is a matrix whose rows are probability vectors, then 𝑃𝑘 has 

probability vectors. 
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Chapter 3 

 

REGULAR MARKOV CHAINS 

 

In the preceding chapters, we introduced the basic property of Markov 

chains, and we developed the formula 𝑃(𝑘) = 𝑃𝑘, which shows that the 

k-step transition matrix equals the kth power of the 1-step transition 

matrix. In this chapter and the next, we continue by considering briefly 

two special types of Markov chains which are especially useful in 

applications, and we give such an application at the end of the chapter. 

Since Markov chains are stochastic processes, we do not ordinarily know 

what will happen at each stage, and we must describe the system in terms 

of probabilities. 

 

State Vector  

Consider a Markov chain with 𝑁 states. A state vector for the Markov 

chain is a probability N vector 𝑋 = [𝑥1   𝑥2     …  𝑥𝑁].  The 𝑖th coordinate 

𝑥𝑖 of the state vector 𝑋 is to be interpreted as the probability that the 

system is in state i. We write a state vector as a row vector. 

 

Theorem 3.1 

If 𝑋𝑘 and 𝑋𝑘+1 denote the state vectors which describe a Markov chain 

after k and k+1 transitions, respectively, then 𝑋𝑘+1 = 𝑋𝑘𝑃 ,where P is the 

transition matrix of the chain. That is, the state vector 𝑋𝑘, which 

describes the system after k transitions is the product of the initial state 

vector and the kth power of the transition matrix. 

 

 

 

Example 3.2 
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A Markov chain has the transition matrix 𝑃 = [
. 5   .5 
. 8   .2 

]. If the system 

begins in state 2, find the state vector after two transitions. 

The initial state vector is 𝑋0 = [0   1]. According to the Theorem 3.1, the 

state vector after two transitions is 

𝑋2 = 𝑋0𝑃
2 = [ 1   0  ] [

. 5   .5  

. 8   .2  
] [

. 5   .5 

. 8   .2 
] = [. 56   .44  ] 

 

There are various ways of classifying Markov chains, and we choose one 

which distinguishes among chains based on their long-run behaviour, i.e., 

on the behaviour of the state vector after many transitions. As we will see 

in our examples, the long-run behaviour of the state vector may provide 

important information in applications. Also, after 𝑋𝑘 has been determined 

for some value of k, in general this does not provide much information 

about 𝑋𝑘+1  or 𝑋𝑘+2  without further computation. Thus, if you are 

interested in studying a stochastic process over many transitions, then it is 

appropriate to develop some tools for determining its long-run behaviour.  

 

Regular Markov Chain 

Definition 3.3 

A Markov chain with transition matrix 𝑃 is regular if there is a positive 

integer k such that 𝑃𝑘 has all positive entries. 

 

Example 3.4  

Markov chains associated with 𝑃1 = [
1

2
    

1

2
 

1     0
] is regular since 

𝑃1
2 = [

1

2
    

1

2
  

1    0  
] [

1

2
    

1

2
  

1     0 
] = [

3

4
   

1

4
 

1

2
    

1

2
 

] 
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And apparently, all its entries are positive. While Markov chains 

associated with 

𝑃2 = [
0   1 
1   0 

] 

is not regular since  

𝑃2
2 = [

0   1
1   0

] [
0   1 
1   0 

] = [
1   0 
0    1

] =  𝐼 . 

And this means 𝑃2
𝑛 contains a zero entry for every n. 

 

The definition of a regular chain (although stated in terms of the powers 

of 𝑃) has the following important consequence. For each j and for k 

sufficiently large, each of the transition probabilities 

𝑃1𝑗(𝑘), 𝑃2𝑗(𝑘),… , 𝑃𝑁𝑗(𝑘) is close to the same number, call it 𝑞𝑗. That is, 

each of the entries in the 𝑗th column of the k-step transition matrix 𝑃(k) is 

close to 𝑃𝑗. Another way of saying this is that for large values of k, the k-

step transition matrix 

𝑃(𝑘) =

[
 
 
 
 

𝑃11(𝑘)              𝑃12(𝑘)             𝑃1𝑁(𝑘)

𝑃21(𝑘)               𝑃22(𝑘)            𝑃2𝑁(𝑘) 
.                       .                        .

.                          .                       .    
𝑃𝑁1(𝑘)            𝑃𝑁2(𝑘)               𝑃𝑁𝑁(𝑘)           ]

 
 
 
 

 

is very close to a matrix that has all rows identical 

[
 
 
 
 
 
𝑊
𝑊
.
.
.

𝑊 ]
 
 
 
 
 

=

[
 
 
 
 
 

𝑤1   𝑤2  …𝑤𝑁 
𝑤1    𝑤2  … 𝑤𝑁 
.         .         .    
.         .         .    
.         .        .    

𝑤1      𝑤2         𝑤𝑁      ]
 
 
 
 
 

  

where 𝑊 = [𝑤1     𝑤2     𝑤𝑁 ] 

 

Example 3.6 

Consider the following transition matrix  
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𝑃 = [
. 5    .4    .1    
. 1     .6     .3   
. 3     .6     .1  

] 

A straightforward computation of the k-step transition matrices (best 

carried out on a computer) gives 

𝑃(2) = [
. 32   .50   .18  
. 20   .58    .22   
. 24   .54    .22  

] 

𝑃(4) = [
. 2456   .5472   .2072 
. 2328   .5552   .2120 
. 2376   .5520   .2104 

] 

𝑃(8) = [
. 2369   .5526   .2105  
. 2368   .5526   .2105  
. 2369   .5526   .2015  

] 

where the entries have been rounded off to the four decimal places 

shown. It is now clear that the rows of 𝑃(8) are essentially equal. This 

illustrates the assertion that as k increases, the k-step transition matrix 

𝑃(𝑘) becomes closer and closer to a matrix all of whose rows are equal to 

the same vector 𝑊. 

The rows in a transition matrix 𝑃, and those of its powers 𝑃𝑘, are all 

probability vectors. For regular chains the rows in 𝑃𝑘 all become closer 

and closer to the same probability vector as k increases. This special 

probability vector is determined by 𝑃 and is called a stable vector for 𝑃. 

The following theorem summarises these concepts. 

 

Theorem 3.7 

Let 𝑃 be the transition matrix for a regular Markov chain. There is a 

unique probability vector 𝑊 = [𝑤1   𝑤2   … 𝑤𝑁] such that for each state 𝑗 

the difference |𝑃𝑖𝑗(𝑘) − 𝑤𝑗| can be made as small as we choose by 

selecting k sufficiently large. The vector 𝑊 is known as a stable vector, 

and its coordinates are known as stable probabilities for the Markov 

chain. 
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In a regular  Markov chain, the probabilities 𝑃𝑖𝑗(𝑘) are for all large val-

ues of k nearly equal to the stable probabilities 𝑤𝑗. This assertion holds 

for each initial state 𝑖, 𝑖 = 1,2,… ,𝑁 . The stable probabilities 𝑊𝑗 can be 

obtained from the vector 𝑊, which is closely approximated by any row of 

𝑃(𝑘) for large values of k. However, obtaining 𝑊 from 𝑃(𝑘) usually 

requires computing 𝑃𝑘 for several large values of k, a method that may be 

impractical. Fortunately, there is an alternative method of obtaining the 

stable probabilities. 

 

Theorem 3.8  

Let 𝑃 be the transition matrix of a regular Markov chain. Then there is a 

unique probability vector 𝑊 which satisfies 𝑊𝑃 = 𝑊 The coordinates of 

this vector are the stable probabilities for the Markov chain. 

 

This theorem provides a direct method of obtaining the stable 

probabilities. Indeed, we need only solve a system of linear equations 

 

Example 3.9 

The matrix 𝑃 = [
. 25   .75 
. 60   .40 

] is the transition matrix of a regular Markov 

chain. To determine the vector 𝑊 of stable probabilities for this Markov 

chain. we make use of the theorem quoted above. That is, we find the 

probability vector 𝑊 which satisfies the system of equations. 

If 𝑊 = [𝑤1   𝑤2  ], then the condition that 𝑊 be a probability vector 

requires that 𝑤1 + 𝑤2 = 1 , and the system 𝑊(𝑃 − 𝐼 ) = 0 or 

[𝑤1  𝑤2  ] [
−.75   .75  
. 60  − .60  

] = [0   0 ] 

−.75 𝑤1 + .60 𝑤2 = 0 

. 75 𝑤1 − .60 𝑤2 = 0 



20 
 

Notice that the last two equations are equivalent, and thus we are left with 

the system of equations 

𝑤1 + 𝑤2 = 1 

. 75 𝑤1 − .60 𝑤2 = 0 

Whose solution is 𝑤1 =
4

9
       and      𝑤2 =

5

9
. 

So, the required vector of stable probabilities for the Markov chain is 

 𝑊 = [
4

9
  

5

9
  ]. 

 

Example 3.10 

To find the stable probabilities for the Markov chain whose transition 

matrix is 

𝑃 = [
. 5     .5     0 
0      .5    .5
. 75   .25   0 

] 

We solve the system 

[𝑤1  𝑤2  𝑤3 ] [
−.5        .5        0 
0   − .5      .5

. 75    .25  − 1 
] = [0   0   0] 

In addition to the condition that 𝑊 be a probability vector which is 

𝑤1 + 𝑤2 + 𝑤3 = 1  

A regular method will lead to the solution 𝑊 = [
3

9
  

4

9
  

2

9
  ]. 

 

We now have a means of computing the vector of stable probabilities for 

any regular Markov chain. To show that a Markov chain is regular, we 

must be able to show that some power of the transition matrix has all 

positive entries. It is important to note that we do not need to know the 

actual entries of the power of the matrix. We only need to know that the 

entries are all positive. 
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Definition 3.11 

The 𝑖th state of a Markov chain is said to be an absorbing state if 𝑃𝑖𝑖 =
1 𝑎𝑛𝑑 𝑃𝑖𝑗 = 0 𝑓𝑜𝑟 𝑗 ≠ 𝑖. That is, state 𝑖 is absorbing if the ith row of the 

transition matrix is the 𝑖th unit vector. 

 

Example 3.12 

In the Markov chain whose transition matrix is shown below, the second 

state is absorbing. Note, however, that the fifth state is not absorbing. 

Even though the fifth row contains a single 1, it is not in the fifth column, 

so the fifth row is not the 𝑖th unit vector. 

 

[
 
 
 
 
 
 

1

3
    0    

1

3
    0    

1

3

0     1     0     0     0
1

2
    0    

1

2
    0     0

1

10
  

2

10
   

3

10
    

4

10
  0

0       0       0     1     0]
 
 
 
 
 
 

. 

 

Absorbing chains must have absorbing states, but that is not enough. It 

must also be possible to go from non-absorbing states to absorbing states 

 

 

Definition 3.13 

 Absorbing Markov chain is a Markov chain is said to be absorbing if  

(a) There is at least one absorbing state, and 

 

(b) For every non-absorbing state 𝑖 there is some absorbing state 𝑗 and a 

positive integer k such that the probability of a transition from state 𝑖 
to state 𝑗 in k steps is positive. 

 

 

Example 3.14 

 

The matrix 𝑃 is the transition matrix of a Markov chain  
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𝑃 =

[
 
 
 
 
1

3
    0    

2

3
   

0    1    0  

0   
1

2
    

1

2
   ]

 
 
 
 

 

 

Here, state 2 is an absorbing state, so condition (a) of the definition of an 

absorbing Markov chain is satisfied. Also 𝑃32 > 0 𝑎𝑛𝑑 𝑃12(2) > 0 , so 

condition (b) is satisfied. Therefore, 𝑃 is the transition matrix of an 

absorbing Markov chain.  

 

To write the transition matrix in canonical form, we relabel the states so 

that absorbing states are listed first. In this example the only absorbing 

state is state 2. We relabel the states so that the original state 2 is 

relabeled as state 1. The labels assigned to the remaining states are not 

important. We relabel the states as follows: 

 

 
After the states are relabeled, the transition matrix changes to reflect the 

new labels. For instance, the old (1, 3) entry 𝑃13 =
2

3
  becomes the new 

(2, 3) entry; the old (2, 2) entry 𝑃22 = 1 becomes the new (1, 1) entry, 

and so on. The transition matrix written in canonical form is 

 

𝑃′ =

[
 
 
 
 
1    0    0     

0    
1

3
    

2

3
  

1

2
   0    

1

2
   ]

 
 
 
 

 

 

This allows us to write the canonical form of 𝑃 in the following form 

which is not unique. 

𝑃′ = [
𝐼    𝑂 
𝑅    𝑄 

] 

 

Here, I is a 𝑘 × 𝑘 identity matrix, 𝑂 is a matrix with all zeros, and 𝑅 and 

𝑄 consist of transition probabilities which correspond to transitions which 

lead directly to absorption, 𝑅, and transitions which do not lead directly 

to absorption, 𝑄. In Example 3.14, matrix 𝑃′ is in the canonical form with 

a 1 × 1  identity matrix 𝐼 = [1] and with                                           
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𝑅 = [
 0 

 
1

2
 ] and 𝑄 = [

1

3
    

2

3
 

0    
1

2
 
]. 

 

 

Definition 3.15 

In the canonical form 𝑃′ = [
𝐼    𝑂 
𝑅    𝑄 

], we call the matrix 𝐹 ≔ (𝐼 − 𝑄 )−1 

the fundamental Matrix. 

 

 

Remark 3.15 

 

It can be shown that the matrix (𝐼 − 𝑄 ) is always invertible. 

 

 

Example 3.16 

 

An absorbing Markov chain has the transition matrix which is written in a 

canonical form 

 

[
 
 
 
 
1    0    0    0
0    1    0    0
1

3
    0   

2

3
    0 

0   
1

5
   

2

5
    

2

5
   ]
 
 
 
 

. 

 

We have 

  

𝑄 = [

2

3
      0

2

5
      

2

5

] , 𝐼 − 𝑄 = [
1  0
0  1

] − [

2

3
   0

2

5
   

2

5
 

] = [

1

3
    0

−
2

5
   

3

5
  

] 

 

So,  
 

𝐹 = (𝐼 − 𝑄)−1 = [
3    0

2   
5

3

]. 

 

Theorem 3.17 

 The (𝑖, 𝑗) entry in the fundamental matrix 𝐹  gives the expected number 

of times that a system which begins in the ith non-absorbing state will be 
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in the jth non-absorbing state before it reaches an absorbing state. The 

sum of the entries in the 𝑖th row of 𝐹gives the expected number of 

transitions of a system which begins in the 𝑗th nonabsorbing state and 

continues until it first reaches an absorbing state. 

 

The fundamental matrix can also be used to obtain other types of 

information about the system. For example, if the system has a single 

absorbing state, then the system will eventually reach that state, but if 

there is more than one absorbing state, then it may in general be absorbed 

in any one of them. Given the state in which the system begins, the 

likelihood that it will be absorbed i various absorbing states can be 

computed by using the fundamental matrix. 
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Chapter 4 

 

 

An application 

 

 

In many areas in temperate climates there is a natural progression as time 

passes: from open meadow grasslands through brush of vegetation to 

young forests and eventually to mature forests. Even in the absence of 

interference by humans, there are events which significantly alter, and 

sometimes reverse the progression. Such an event, and a very important 

one, is fire. Fires arise naturally through lightning strikes and are an 

important contributor to the perpetuation of grasslands. The natural 

progression of vegetation, and especially the occurrence of fires, is 

influenced by random events and therefore can be modelled by using 

stochastic processes. In addition to fires, other random events influencing 

vegetation include the introduction of seeds of plants not currently 

represented, the amount and timing of rainfall, the feeding habits of 

wildlife, and similar natural events. Under certain circumstances, Markov 

chains are appropriate as models for such situations. To construct a 

Markov chain model for plant succession, we focus on a single area 

which we suppose small enough that it can be classified into exactly one 

of four states. The state is determined by the dominant vegetation form: 

grassland (G), brush and shrubs (B), young forest (YF), and mature forest 

(MF). We suppose that the area is observed every decade and that the 

state or character of the area is noted at each observation. For the 

moment, we consider the progression from state to state in the absence of 

fire. We assume that the period between observations is such that 

progression proceeds at most one step between successive observations. 

That is, if the area is grassland at one observation, then at the next 

observation it is either grassland or brush and shrubs, and so on for other 

plant types. We also assume that once an area becomes a mature forest, it 

remains so throughout the time of observation. Continuing to consider the 

situation in the absence of fires, suppose the data support the assumption 

that one-step (10-year) transition probabilities are as follows: 

 

Pr[𝐺|𝐺] = .7 𝑎𝑛𝑑 Pr[𝐵|𝐺] = .3 
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Pr[𝐵|𝐵 ] = .8 𝑎𝑛𝑑 Pr[𝑌𝐹|𝐵] = .2  

Pr[𝑌𝐹|𝑌𝐹] = .5 𝑎𝑛𝑑 Pr[𝑀𝐹|𝑌𝐹] = .5  

Pr[𝑀𝐹|𝑀𝐹] = 1 

Next, we turn to what happens when there is a fire. We consider only 

fires which are severe enough to cause an area to revert to grassland. 

Fires which have no effect on the state of the system or which cause the 

system to revert to a state other than grassland are not considered in this 

model. Suppose that in any decade a fire which reverts the area to 

grassland occurs with probability .1. We note that if the occurrence of 

such fires can be viewed as a Bernoulli process, then this assumption 

leads to the conclusion that the expected number of such fires is one per 

century. It follows that, in each decade, with probability .9 the area does 

not have a fire which affects the state of the system. Combining our 

assumptions about the occurrence of fires and what happens in the two 

situations (no fire and fire), we find that between two successive 

observations we have the following: 

 

Probability of transition from grassland to grassland 

Pr[𝐺|𝐺 𝑎𝑛𝑑 𝑛𝑜 𝑓𝑖𝑟𝑒] . Pr[𝑛𝑜 𝑓𝑖𝑟𝑒 ] + Pr[𝐺|𝐺 𝑎𝑛𝑑 𝑓𝑖𝑟𝑒] . Pr[𝑓𝑖𝑟𝑒]

= .7(. 9) + 1(. 1) = .73  

This approach also yields transition probabilities for the other possible 

transitions. For example, 

Probability of transition from grassland to brush 

Pr[𝐵|𝐺 𝑎𝑛𝑑 𝑛𝑜 𝑓𝑖𝑟𝑒] . 𝑃𝑟[𝑛𝑜 𝑓𝑖𝑟𝑒] + 𝑃𝑟[𝐵|𝐺 𝑎𝑛𝑑 𝑓𝑖𝑟𝑒] . 𝑃𝑟[𝑓𝑖𝑟𝑒]

= .3(. 9) + 0(. 1) = .27   

Probability of transition from brush to grassland 

Pr[𝐺|𝐵 𝑎𝑛𝑑 𝑛𝑜 𝑓𝑖𝑟𝑒] . Pr[𝑛𝑜 𝑓𝑖𝑟𝑒] + Pr[𝐺|𝐵 𝑎𝑛𝑑 𝑓𝑖𝑟𝑒 ] . Pr[𝑓𝑖𝑟𝑒]

= 0(. 9) + 1(. 1) = .1   

Probability of transition from brush to brush 

Pr[𝐵|𝐵 𝑎𝑛𝑑 𝑛𝑜 𝑓𝑖𝑟𝑒] . Pr[𝑛𝑜 𝑓𝑖𝑟𝑒] + Pr[𝐵|𝐵 𝑎𝑛𝑑 𝑓𝑖𝑟𝑒] . Pr[𝑓𝑖𝑟𝑒]

= .8(. 9) + 0(. 1) = .72   

Probability of transition from brush to young forest 
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Pr[𝑌𝐹|𝐵 𝑎𝑛𝑑 𝑛𝑜 𝑓𝑖𝑟𝑒] . Pr[𝑛𝑜 𝑓𝑖𝑟𝑒] + Pr[𝑌𝐹|𝐵 𝑎𝑛𝑑 𝑓𝑖𝑟𝑒] . Pr[𝑓𝑖𝑟𝑒]

= .2(. 9) + 0(. 1) = .18   

 

We now have the entries in the first two rows of the transition matrix for 

this Markov chain. Entries in the last two rows can be determined by 

using the same approach. We collect all this information in a transition 

matrix which describes the plant succession, including the possibility of 

fire. The transition matrix 𝑃, with states as the types of vegetation which 

dominate the area, is 

                                                   G    B     YF    MF 

𝑃 = [

. 73   .27    0    0
. 1     .72    .18    0
. 1    0   .45    .45 
. 1   0   0    .9   

]. 

 

Suppose that the succession of vegetation is described by this model and 

that the area is observed over many decades. What is the probability that 

over the long run it is grassland? Since a power of the matrix 𝑃 has all 

positive entries, this is a regular Markov chain, and we can answer the 

question by determining the stable vector for the chain. That is, we find 

the unique probability vector 𝑊 which satisfies the equation 𝑊𝑃 = 𝑊. 

The system of equations 𝑊𝑃 = 𝑊 

[𝑤1   𝑤2   𝑤3   𝑤4 ] [

. 73   .27    0    0
. 1     .72    .18    0
. 1    0   .45    .45 
. 1   0   0    .9   

] = [𝑤1  𝑤2  𝑤3  𝑤4 ] 

Or  

. 27𝑤1 − .1𝑤2 − .1𝑤3 − .1𝑤4 = 0 

                                   . 27𝑤1 − .28𝑤2                       = 0 

                               . 18𝑤2 − .55𝑤3                           = 0   

                                   . 45𝑤3 − .1𝑤4                         = 0 

The solution of this system which satisfies the additional condition 𝑤1 +

𝑤2 + 𝑤3 + 𝑤4 = 1 is 

𝑊 = [𝑤1    𝑤2    𝑤3   𝑤4  ] = [. 270  .261  .085  .384  ] 
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From this we conclude that over the long term we would expect the area 

to be grassland about 27 percent of the time, brush about 26.1 percent of 

the time, young forest about 8.5 percent of the time, and mature forest 

about 38.4 percent of the time. 

Next suppose that through intervention it is possible to control fires if a 

decision is made to do so. Also suppose it is social policy to control fires 

in mature forests, and therefore once the area reaches a mature forest it 

remains in that state. In this situation the transition matrix becomes 

                                                G   B   YF   MF 

[

. 73    .27      0   0
. 1     .72   .18   0
. 1     0      .45   .45
0     0       0         1

] 

This is the transition matrix of an absorbing Markov chain. Suppose that 

the area is initially a grassland. How many years before it becomes a 

mature forest?  

To answer the question, we determine the expected number of transitions 

required for the system to first reach state MF, given that it began in state 

G. Labelling non-absorbing states in the order G, B, YF, the matrices 𝑄 

and 𝐹 (as defined in the third chapter) are 

𝑄 = [

. 73   .27   0
. 1      .27    .18
. 1     0     .45

] 

𝐹 = [
7.04    6.79    2.22
3.34    6.79    2.22
1.28    1.23    2.22

] 

From this we conclude that if the system is initially in state 1 (grassland), 

then the expected number of transitions until the system first reaches state 

4 (mature forest) is 7.04 + 6.79 + 2.22 = 16.05, and consequently the 

expected number of years is about 160. 
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