

جامعة الإمام محمد بن سعود الإسلامية كلية العلوم

Program of PhD admission exam

No	Subject	Subject words
1	Advanced	Vectors spaces; Eigenvalues and Linear
	Linear Algebra	operators; Inner product; Quadratic forms.
2	Algebra	Groups; Rings and fields
3	Topology	Topological spaces; Metric spaces;
		Connectedness and compactness; Countability
		and separation axioms.
4	Complex	Functions of complex variables; Continuity and
	Analysis	differentiability; Complex integral; Complex
		sequences and series; Residues and the residue
		theorem.
5	Numerical	Error and numerical representation; Solving
	Analysis	equations; Solving linear systems; Eigenvalue
		problems.
6	Measure and	Lebesgue measure on R; Lebesgue measurable
	Integration	functions; Lebesgue integration; Convergence
		theorems; Lp spaces.
7	Functional	Normed and Banach spaces; Inner product and
	Analysis	Hilbert spaces; Continuous liner operator on
		normed spaces; Duality of normed spaces.
8	Partial	Distributions; Hyperbolic; Parabolic; and Elliptic
	Differential	partial differential equations.
	Equations	

قسم الرياضيات والإحصاء دكتوراه الفلسفة في الرياضيات

جامعة الإمام محمد بن سعود الإسلامية كلية العلوم

References

- 1- S. Friedberg, A. Insel, and L. Spence, Linear algebra; Pearson, 4th Ed. 2002.
- 2- D. Dummit, R. Foote, Abstract Algebra; John Wiley, 3rd ed. 2003.
- 3- J. R. Munkres, Topology; Pearson, 2nd Ed. 2000.
- 4- R.P. Agarwal, K. Perera, S. Pinelas; An Introduction to Complex Analysis, Springer, 1st Ed. 2011
- 5- R.L. Burden, J.D. Faires, Numerical Analysis, Brooks Cole, 9th Edition, 2011
- 6- H.L. Royden, P.M. Fitzpatrik, Real Analysis, Pearson, 4th Edition, 2010.
- 7- E. Kreyszig, Introductory Functional Analysis; Wiley, 1st Ed. 1989.
- 8- R. Haberman, Applied Partial Differential Equations with Fourier Series and Boundary Value Problems; Pearson 2012