

Course Specification

- (Bachelor)

Course Title: Calculus (2)

Course Code: MAT 1105

Program: Bachelor of Science in Actuarial and Financial Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2024 – V1

Last Revision Date: None

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	6
G. Specification Approval	6

A. General information about the course:

1. Course Identification

1. 0	1. Credit hours:					
4 (3	Lectures, 0 Lab, 2 Tu	torial)				
2. 0	2. Course type					
A.	□University	□ College	☐ Department	□Track	□Others	
В.	⊠ Required		□Elect	ive		
3. Level/year at which this course is offered: Level 2 / Year 1						

4. Course general Description:

This course describes the most important ideas, theoretical results, and examples of integration technics, infinite series, and parametric equations. The course includes the essential fundamentals of these topics. The emphasis is on calculations, and some applications are mentioned.

5. Pre-requirements for this course (if any):

MAT 1104

6. Co-requisites for this course (if any):

None.

7. Course Main Objective(s):

- To understand the meaning of definite integral as a limit of Riemann sum.
- To learn different techniques of integration.
- To understand the applications of definite integrals to physics and Engineering.
- To develop the basics of the calculus of infinite series, and their applications.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	75	100%
2	E-learning	0	0%
3	HybridTraditional classroomE-learning	0	0%
4	Distance learning	0	0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	30
5.	Others (specify)	0
	Total	75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods	
1.0	Knowledge and understanding				
1.1	Identify different techniques of integration and improper integrals.	K 1	3 lecture hours\week	Direct: Regular Exams	
1.2	List theorems and tests of convergence of sequences and series.	К3	• 2 tutorial hours\week • Self-study	Direct: Short Quizzes	
2.0	Skills				
2.1	Use the concepts of definite integrals to solve problems involving area, volume, work, and other physical applications.	S3	• Self-study • Real-life problems	Direct: • Participations • Short Quizzes	
2.2	Apply the concepts of limits, convergence, and divergence to evaluate some classes of infinite series and/or improper integrals.	S 3	Self-study	Direct: Participations	
2.3	Illustrate the revolution of a solid region using CAS and online solvers.	S 3	Real-life problems	Direct: Short Quizzes	
2.4	State clearly and precisely both orally and in writing, Taylor or Mac Laurin series.	83	Self-study	Direct: Participations	
3.0	Values, autonomy, and	d responsibility			
3.1	Shows self-reliance when working independently.	V2	Personal questions	Direct: Participation	
3.2	Develop constructive and supportive relationships with classmates.	V2	Teamwork and class discussions.	Direct: Homework and Mini projects	

C. Course Content

No	List of Topics	Contact Hours
1.	Integration: Anti-derivatives, Indefinite Integral and its properties, Sums and Sigma Notation, Partitions and Riemann sums, Area under curves and The Definite Integral, First and Second Fundamental Theorems of Calculus.	15
2.	Integration Techniques: Integration by Substitution, Integration by Parts, Integration of Rational Functions Using Partial Fractions, Trigonometric Techniques of Integration, Integrals involving logarithmic, exponential, and hyperbolic functions, Improper Integrals.	20

3.	Applications of Definite Integrals: Area between curves, Volumes by slicing, Volumes using Cylindrical Shells, Arc Length and Surface Area.	10
4.	Infinite Series: Sequences of Real Numbers, Convergence and Divergence of Infinite Sequences, Formal definition of a convergent sequence, Infinite Series, Basic Infinite Series (geometric series, p-series, alternating series, telescoping series), Convergence Tests for Positive Series (ratio test, root test, comparison and limit comparison test, integral test), Alternating Series, Absolute and Conditional Convergence, Power Series, Differentiation ad Integration of power series, Taylor and Maclaurin Series, Convergence of Taylor series, Applications of Taylor and Maclaurin Series.	20
5	Parametric equations: Plane Curves and Parametric Equations, Calculus and Parametric Equations, Arc Length and Surface in Parametric Equations.	10
	Total	75

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HomeWorks, Quizzes, Mini projects	During the term	10%
2.	First Midterm	Week 5-6	25%
3.	Second Midterm	Week 10-11	25%
4.	Final Exam	Week 16	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	<i>Calculus</i> , 4th Edition, R. T. Smith, R. B. Minton, McGraw-Hill, 2012. (Main Reference)
Supportive References	 Calculus; O. Swokowski, et al, PWS Pub. Co.; 6th Edition, 1994. Calculus: Early Transcendentals, 7th Edition; C. Henry Edwards, David E. Penney, Pearson Prentice Hall, 2008. Essential Calculus with Application; Richard A. Silverman, Dover Publications, 1989. Schaum's Outline of Calculus, 6th Edition; Frank Ayres, Elliott Mendelson, McGraw-Hill, 2013.
Electronic Materials	None
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities	 Each classroom should be equipped with a whiteboard and a projector.

Items	Resources
(Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Laboratories should be equipped with computers and an internet connection.
Technology equipment	The rooms should be equipped with data show
(projector, smart board, software)	and Smart Board.
Other equipment	None
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Effectiveness of Students assessment	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
The extent to which CLOs have been achieved	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Other	None	

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
REFERENCE NO.	8/1446
Date	05/04/1446 (08/10/2024)

