

Course Specification

- (Bachelor)

Course Title: Introduction to Operations Research

Course Code: MAT 1254

Program: Bachelor of Science in Actuarial and Financial Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2024 – V1

Last Revision Date: None

Table of Contents

A. General information about the course:	. 3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods.	4
C. Course Content	. 5
D. Students Assessment Activities	. 5
E. Learning Resources and Facilities	. 5
F. Assessment of Course Quality	6
G. Specification Approval	. 6

A. General information about the course:

4 6						
1. C	ו בפי	М	On	tit	IC3	tion

1. C	1. Credit hours:				
3 (2]	3 (2 Lectures, 0 Lab, 2 Tutorial)				
2. C	2. Course type				
A.	□University	□College	□ Program	□Track	□Others
В.	B. ⊠ Required □Elective				
3 1	3. Level/year at which this course is offered: Level 4 / Year 2				

4. Course general Description:

This course describes the most important ideas, theoretical results, and examples of an introduction to operations research. The course includes the essential fundamentals of linear and integer programming. The emphasis is on calculations, and some applications are mentioned.

5. Pre-requirements for this course (if any):

MAT 1224

6. Co-requisites for this course (if any):

None.

7. Course Main Objective(s):

After finishing this course, the student should be able to formulate a real problem with a linear program (if possible) and to solve it with the appropriate method (Simplex algorithm, Dual Simplex algorithm, special algorithms for transportation or assignment problems, or algorithms for integer programming) by hand (if possible) or by using TORA software.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	0	0%
3	HybridTraditional classroomE-learning	0	0%
4	Distance learning	0	0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	30
5.	Others (specify)	0
	Total	60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Identify a Linear Programming Problem and its formulation.	K 1	• 2 lecture hours\week • 2 tutorial hours\ week Self-study	Direct: • Regular Exams • Assignments • Short Quizzes
1.2	Recall techniques of operations research including Linear Programming, Assignment Problem. Integer programming, simplex, duality and sensitive analysis.	К3	2 lecture hours\week2 tutorial hours\weekSelf-study	Direct: • Regular Exams • Assignments • Short Quizzes
2.0	Skills			
2.1	Produce solutions for real-life problems by applying the methodology and tools of Operations Research including Linear Programming, Assignment Problem. Integer programming, simplex, duality and sensitive analysis.	83	Self-study Real-life problems	Direct: Participations Short Quizzes
2.2	Construct by using mathematical language understandable operational research problems from the verbal description of the real system.	S 3	Self-study Real-life problems	Direct: Participations Short Quizzes
2.3	Use TORA software to solve operations research problems.	S3	Self-study Real-life problems	Direct: Participations Short Quizzes
2.4	Analyze linear programming problems using appropriate techniques and optimization solvers.	S3	Self-study Real-life problems	Direct: Participations Short Quizzes
3.0	Values, autonomy, and responsibili	ity		
3.1	Generate initiatives with independence.	V2	Class discussion	Direct: Participation
3.2	Debate in groups.	V2	Class discussion Teamwork	Direct: Homework and Mini projects

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to Linear programming: Overview, Linear programming formulations, Graphical Linear Programming Solution, Graphical Sensitivity analysis.	8
2.	The Simplex Method: Standard Linear Programming, Determination of Basic Feasible Solutions; The Simplex Algorithm.	8
3.	Special Cases of the Simplex: Degeneracy, Alternative optimum, Unbounded solution, Infeasibility.	6

4.	Duality and Sensitivity Analysis: Formulation of the Dual Problem, Relationship between Optimal Primal and Optimal Dual Solutions, Economic interpretation of Duality, Dual Simplex and Sensitivity Analysis.	10
5.	Special linear programming models: The transportation model, The assignment model, Application to the Traveling Salesman Problem.	8
6.	Introduction to Integer Linear Programming: Illustrative applications, Branch and Bound algorithm.	10
7.	Tora Software: Use of TORA software to solve exercises and problems from all course chapters.	10
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, Quizzes, Mini-projects	During the term	10%
2.	First Midterm	Week 5-6	25%
3.	Second Midterm	Week 10-11	25%
4.	Final Exam	Week 16	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	<i>Operations Research: An Introduction</i> , H. Taha, Prentice Hall, 8 th Edition, 2006. (Main Reference)
Supportive References	 Introduction to Operations Research, F. Hillier and G. Lieberman, 7th Edition, McGraw Hill, 2001. Operations Research: Applications and Algorithms; 3rd Edition, Wayne L. Winston, Inc. Thomson Learning, 2004.
Electronic Materials	None
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each classroom should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology equipment (projector, smart board, software)	The rooms should be equipped with data show and Smart Board.

Items	Resources
Other equipment	None
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Effectiveness of Students' assessment	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
The extent to which CLOs have been achieved	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Other	None	

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL	
Reference No.	8/1446	
Date	05/04/1446 (08/10/2024)	

