

Course Specification

- (Bachelor)

Course Title: Computer Programming for Science

Course Code: CS 1248

Program: Bachelor of Science in Actuarial and Financial Mathematics

Department: Computer Science

College: Computer Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2024 – V1

Last Revision Date: None

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	
C. Course Content	4
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General information about the course:

1. Course Identification

	1.	Credit hours:	(4)
--	----	---------------	-----

3 (2 Lectures, 2 labs, 0 Tutorials)

2. Course type

Α.	□University	□ College	□Department	□Track	□Others
В.	⊠ Required		□Electi	ve	

3. Level/year at which this course is offered: (Level 4 / Year 2)

4. Course general Description:

The course introduces essential computer programming skills and knowledge that are required for students in the different fields of studies. Topics include algorithms and problem-solving strategies, control statements (sequence, selection, and repetition), fundamental data types, data structures, and introduction to object-oriented programming. The course uses Python programming language, which is the preferable choice for science and data analysis due to its huge collection of libraries and built-in data Visualization and analysis tools.

5. Pre-requirements for this course (if any):

MAT 1244

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

The main purpose of this course is to provide key programming skills and techniques that enable students to design solutions to nontrivial problems and implement those solutions in Python programming language. The course aims to teach students how to write computer programs, debug and fix errors, use data Visualization and analysis tools in Python, and execute programs to solve problems.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	0	0%
3	HybridTraditional classroomE-learning	0	0%
4	Distance learning	0	0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
	Total	60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Describe the uses of primitive and compound data types in programming languages	К2	Lectures Class Exercises Lab Tutorials	Direct: Written exams and assignments
1.2	Identify problem-solving strategies	К2	Lectures Class Exercises Lab Tutorials	Direct: Written exams and assignments
1.3	Recall the compile-time and run-time errors in programming languages	К2	Lectures Class Exercises Lab Tutorials	Direct: Written exams and assignments, and lab exams
2.0	Skills			
2.1	Develop, and test a program that implements an algorithm using the appropriate fundamental programming constructs	S2	Class Tutorials Lab Tutorials Lectures	Direct: Written and lab exams
2.2	Analyze the syntax errors to execute the program and achieve intended objectives	S2	Class Tutorials Lab Tutorials Lectures	Direct: Written and lab exams
2.3	Implement functions, object-oriented concepts, and python tools to solve particular problem	S2	Class Tutorials Lab Tutorials Lectures	Direct: Written and lab exams
3.0	Values, autonomy, and	responsibility		
3.1	Debate effectively in a team to achieve computer programming tasks	V1	Tutorials Lectures Group assignments	Direct: Group Project and lab assignments

C. Course Content

No	List of Topics	Contact Hours
1.	Algorithms & Problem Solving	5
2.	Data Types, Variables, Operators	5

	Total	60
11	Data Analysis Tools in Python	10
10	Data Visualization in Python	5
9	Classes and Objects	5
8	Tuples, dictionaries, common python mistakes	5
7	Recursion	5
6	Strings, lists, list comprehensions	5
5	Defining Functions	5
4	Iterative control Structures	5
3	Conditional Control Structures	5

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes/ Assignments	During the term	20%
2.	Lab Exams	Week 7	10%
3.	Midterm Exam	Week 10	20%
4.	Group Project	Week 14	10%
5.	Final Exam	Week 16	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Gowrishankar S, Veena A, 2018, "Introduction to Python Programming", 1st Edition, CRC Press. ISBN-13: 978-0815394372
	Jake VanderPlas, 2016, "Python Data Science Handbook: Essential Tools for Working with Data", 1st Edition, O'Reilly Media. ISBN-13: 978-1491912058
Supportive References	Downey, Allen, Jeffrey Elkner, and Chris Meyers. How to Think Like a Computer Scientist: Learning with Python. Green Tea Press, 2002, ISBN: 9780971677500
	Yves Hilpisch (2019) Python for Finance: Mastering Data-Driven Finance 2nd Edition.
Electronic Materials	A gentle introduction to programming using python (https://ocw.mit.edu/courses/electrical-engineering-and-

 $\frac{computer\text{-}science/6\text{-}189\text{-}a\text{-}gentle\text{-}introduction\text{-}to\text{-}programming-}{using\text{-}python\text{-}january\text{-}iap\text{-}2011/})$

Blackboard Learning Management System

Other Learning Materials

None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms (or conference video call for girls) with at least 35 seats and teaching board. Computer programming lab with at least 35 PC and required software (operating system, Python, Editors, etc).
Technology equipment	Projector, and smart boards
(projector, smart board, software)	
Other equipment	None
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	1. Students feedback (collected through surveys) as per university policy/procedure 2. Teacher's Course report
Effectiveness of Students assessment	Students Instructors	 1. Faculty Members Survey 2. Students feedback (collected through surveys) as per university policy/procedure 3. Teacher's Course report
Quality of learning resources	Students	1. Students feedback (collected through surveys) as per university policy/procedure 2. Teacher's Course report
The extent to which CLOs have been achieved	Students Instructors Course Coordinator	 Faculty Members Survey Students feedback (collected through surveys) as per university policy/procedure Teacher's Course report Course Report
Other	None	

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	CS QUALITY COMMITTEE
REFERENCE NO.	
DATE	

