

Course Specification

(Postgraduate Programs)

Course Title: Functional Analysis

Course Code: MAT 7115

Program: Doctor of Philosophy in Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2024 – V1

Last Revision Date: None

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	6
G. Specification Approval	6

A. General information about the course:

1. Course Identification

1.	1. Credit hours:					
4 (4	Lectures, 0 Lab, 0 Tu	ıtorial)				
2.	Course type					
A.	☐ University	☐ College	⊠ Progra	ım	☐ Track	☐ Others
В.	⊠ Required			☐ Electi	ive	
3.	Level/Year at wl	hich this course	is offered	: Level	2 / Year 1	
4.	Course general I	Description:				
This course describes the most important ideas and theoretical results of applied functional analysis. The main topics of this course concern the functional analysis of infinite-dimensional linear spaces. The course also deals with the theory of operators: positive definite operators, Fredholm operators, compact operators, self-adjoint operators.						
5. Pre-requirements for this course (if any):						
None.						
6. Co-requisites for this course (if any):						
None.						
7	7 Course Main Objective(s):					

7. Course Main Objective(s):

The objective of this course is to provide a deep knowledge of applied functional Analysis and to study some major theorems and concepts that can be applied in functional analysis and various problems including partial differential equations.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	0	0%
3	HybridTraditional classroom	0	0%
	E-learning		
4	Distance learning	0	0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	60
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0

Total 60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods	
1.0	Knowledge and understanding				
1.1	Identify the fundamentals of the operator and spectral theories.	K1, K2	4 lecture hours\week	Direct: Regular Exams	
1.2	Describe the weak topology and weak and weak* convergence.	K1, K2	• 4 lecture hours\week • Self-study	Direct: Short Quizzes	
2.0	Skills				
2.1	Use techniques of proof in weak topologies.	S1, S2	Self-study	Direct: • Participations • Short Quizzes	
2.2	Develop oral communication and technical writing skills through linear operators.	S4	Real-life problems	Direct: Homework and Mini projects	
2.3	Analyze Internet in searching for resolvents of compact operators.	S 3	Real-life problems	Direct: Short Quizzes	
2.4	Choose out deep and not short proofs in functional theorems.	S1, S2	Self-study	Direct: Participations	
3.0	Values, autonomy, and	d responsibility			
3.1	Work with independence and responsibility.	V1, V2	Personal questions	Direct: Participation	
3.2	Lead team works.	V1, V3	Teamwork and class discussions.	Direct: Homework and Mini projects	

C. Course Content

No	List of Topics	Contact Hours
1.	Duality for normed linear spaces: Weak topologies, locally convex topological spaces, Mazur's Theorem, Krein-Milman Theorem, Alaoglu's Compactness Theorem.	20
2.	Linear Operators: Continuous and bounded linear operators, adjoint operators, self-adjoint operator, compact operators, orthonormal bases in Hilbert Spaces.	15

3.	Spectrum of self-adjoint compact operators: resolvents, the spectral theorem, Hilbert-Schmidt Theorem, Riesz-Schauder Theorem and Fredholm Alternative Theorems.	25
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HomeWorks, Quizzes, Mini projects	During the semester	30%
2.	Midterm	Week 9-10	30%
3.	Final Exam	Week 15-16	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	H. Brezis: Functional Analysis, Sobolev spaces, and Partial Differential Equations, Springer, New York, 2010.
Supportive References	 P. Lax, Functional Analysis with Applications, John Wiley & Sons, 2002. Y. Eidelman, V. Milman, and Tsolomitics, Functional Analysis, An Introduction, Graduate Texts in Mathematics, American Mathematical Society, 2004. J. Cerda, Linear functional Analysis, Graduate Texts in Mathematics, American Mathematical Society, 2010. J.B. Conway, A course in Functional Analysis, Second Edition, Springer, Graduate Texts in Mathematics v. 96, 1990. W. Rudin, Functional Analysis, McGraw-Hill Company, 1973.
Electronic Materials	None
Other Learning Materials	None

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.

Items	Resources
Technology equipment (projector, smart board, software)	The rooms should be equipped with data show and Smart Board.
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Effectiveness of Students assessment	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
The extent to which CLOs have been achieved	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Other	None	

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
REFERENCE NO.	8/1446
DATE	05/04/1446 (08/10/2024)

