

Course Specification

(Postgraduate Programs)

Course Title: Random Dynamical Systems

Course Code: MAT 7205

Program: Doctor of Philosophy in Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2024 - V1

Last Revision Date: None

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	6
G. Specification Approval	6

A. General information about the course:

1. Course Identification	1. Course Identification			
1. Credit hours:				
4 (4 Lectures, 0 Lab, 0 Tutorial)				
2. Course type				
A. University Col	llege ⊠ Prog	ram 🗆 Tra	ck	
B. Required		⊠ Elective		
3. Level/Year at which thi	s course is offere	d: Level 3 / Ye	ar 2	
4. Course general Descrip	tion:			
The course covers the basic principles of the theory of random dynamical systems. Topics include infinite dimensional Dynamical Systems (DS) on probability spaces, Metric Dynamical Systems, Cocycles over a DS, Random Dynamical Systems (RDS), fundamental examples of RDS and invariant measures for RDS.				
5. Pre-requirements for this course (if any):				
None.				
6. Co-requisites for this course (if any):				
None.				

7. Course Main Objective(s):

The aim of this course is to use the translation shift and the Wiener shift as metric dynamical systems to understand the concept of random dynamical system as a cocycle over a dynamical system. It is also concerned with the analysis of different types of random dynamical systems. Understanding the concepts of invariant measure and random fixed point for a random dynamical system is a very important issue of this course.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	0	0%
3	HybridTraditional classroomE-learning	0	0%
4	Distance learning	0	0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	60

2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
	Total	60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods	
1.0	Knowledge and understanding				
1.1	To define the concept of cocycle over a metric dynamical system given by translation and Wiener shifts.	K1, K2	4 lecture hours\week	Direct: Regular Exams	
1.2	To record the concept of random dynamical systems and the associated invariant measures.	K1, K2	• 4 lecture hours\week • Self-study	Direct: Short Quizzes	
2.0	Skills				
2.1	To develop techniques of proof in measurable and dynamical systems.	S1, S2	Self-study	Direct: • Participations • Short Quizzes	
2.2	To develop oral communication and technical writing skills through random differential equations.	83	Real-life problems	Direct: Homework and Mini projects	
2.3	To use Internet in searching for invariant measures.	84	Real-life problems	Direct: Short Quizzes	
2.4	To carry out deep proofs in factorization of measures.	S1, S2	Self-study	Direct: Participations	
3.0	Values, autonomy, and	dresponsibility			

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
3.1	To work independently.	V1, V3	Personal questions	Direct: Participation
3.2	To collaborate and work in team works.	V1, V2	Teamwork and class discussions.	Direct: Homework and Mini projects

C. Course Content

No	List of Topics	Contact Hours
1.	Measurable Dynamical Systems (DS): Definition, Measure Preserving DS, Stochastic Processes and DS, DS Defined by the Translation Shift, Wiener DS.	15
2.	Random Dynamical Systems (RDS): Cocycle over a DS, Measurable RDS, Continuous RDS, Smooth RDS, Linear RDS, Two-sided Time RDS, Perfection of a Crude Cocycle.	15
3.	Fundamental Examples of RDS: Discrete Time RDS, Random Iteration, Continuous Time RDS 1, Random Differential Equations, Continuous Time RDS 2, Stochastic Differential Equations.	15
4.	Invariant Measures for RDS: Skew Product Defined By a RDS, Factorization of Measures, Invariance in Terms of Factorization, Invariant Product Measure, Random Fixed Points, Invariant Measures for Continuous RDS.	15
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HomeWorks, Quizzes, Mini projects	During the semester	30%
2.	Midterm	Week 9-10	30%
3.	Final Exam	Week 15-16	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	L. Arnold, Random Dynamical Systems; Springer-Verlag, 1998. (Main Reference)
Supportive References	 R. Bhattacharya and M. Majumdar, Random Dynamical Systems: Theory and Applications, Cambridge Univ. Press, 2007. A. Swischuk and S. Islam, Random Dynamical System in

	Finance, CRC Press, Taylor and Francis Group, 2013.
Electronic Materials	None
Other Learning Materials	None

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology equipment (projector, smart board, software)	The rooms should be equipped with data show and Smart Board.
Other equipment	None
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Effectiveness of Students assessment	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
The extent to which CLOs have been achieved	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Other	None	

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

REFERENCE NO.	8/1446

DATE	05/04/1446 (08/10/2024)