

Course Specification

— (Postgraduate Programs)

Course Title: Numerical Optimization

Course Code: MAT 7245

Program: Doctor of Philosophy in Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2024 - V1

Last Revision Date: None

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. C	ourse identifica	ition				
1. 0	1. Credit hours:					
4 (4	Lectures, 0 Lab, 0 T	utorial)				
2. 0	Course type					
Α.	☐ University	☐ College	□ Program	☐ Track	☐ Others	
В.	\square Required		⊠ Ele	ective		
3. L	.evel/Year at w	hich this cours	se is offered: Lev	el 3 / Year 2		
4. (4. Course general Description:					
This course describes an important part of mathematics used to solve minimization problems. In this course fundamentals in optimization are developed and Matlab programming is handled. Theoretical and numerical aspects will be both considered.						
5. Pre-requirements for this course (if any):						
None.						
6. Co-requisites for this course (if any):						
Non	None.					
7. 0	7. Course Main Objective(s):					

7. Course Main Objective(s):

The objective of this course is to provide a good understanding on constrained and unconstrained optimization in one and several dimension spaces. For nonlinear problems. Convex problems will also be considered. In addition, the course helps to perform some algorithms and codes in order to deepen programming and numerical analysis. MATLAB software will be handled.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	0	0%
3	HybridTraditional classroom	0	0%
	E-learning		
4	Distance learning	0	0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	60
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0

Total 60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	To recognize mathematical modeling and operations research techniques	K1, K2	4 lecture hours\week	Direct: Regular Exams
1.2	To record complex problems that require making decisions in situations of complex and uncertain nature	K1, K2	• 4 lecture hours\week • Self-study	Direct: Short Quizzes
2.0	Skills			
2.1	To develop techniques of proof in univariate optimization.	S1, S2	Self-study	Direct: • Participations • Short Quizzes
2.2	To develop oral communication and technical writing skills through techniques in constrained and Unconstrained multivariate Optimization	S3	Real-life problems	Direct: Homework and Mini projects
2.3	To use Internet in searching for Gradient methods.	S4	Real-life problems	Direct: Short Quizzes
2.4	To carry out deep proofs in linear and nonlinear optimization.	S1, S2	Self-study	Direct: Participations
3.0	Values, autonomy, and	d responsibility		
3.1	Work with independence and responsibility.	V1, V2	Personal questions	Direct: Participation
3.2	Lead team works.	V1, V3	Teamwork and class discussions.	Direct: Homework and Mini projects

C. Course Content

No	List of Topics	Contact Hours
1.	Univariate Optimization: Introduction (local and global minima, Necessary condition, etc.), Dichotomous search, Fibonacci search,	17

Golden section search, Newton's and secant methods, remarks on line search methods. Quadratic and cubic interpolations, Algorithm of Davies, Swann and Campey, Inexact line Searches	
Unconstrained multivariate Optimization: Gradient methods: Steepest-Descent Method, Newton Method, Gauss-Newton Method, Conjugate-direction methods: Conjugate Directions, Basic Conjugate-Directions Method, Conjugate-Gradient Method, Minimization of Nonquadratic Functions, Fletcher-Reeves Method, Powell's Method, Partan Method. Minimax methods: Problem Formulation, Minimax Algorithms, Improved Minimax Algorithms. Quasi- Newton methods Rank-One Method, Davidon-Fletcher-Powell Method, The Broyden Family	20
Constrained multivariate Optimization: Fundamentals of constrained optimization: Lagrange Multipliers, First-Order Necessary Conditions, Second-Order Conditions, Convexity, Duality, Quadratic and convex programming: Convex QP Problems with Constrained multivariate Optimization: Fundamentals of constrained optimization: Lagrange Multipliers, First-Order Necessary Conditions, Second-Order Conditions, Convexity, Duality, Quadratic and convex programming: Convex QP Problems with Equality Constraints, Interior-Point Methods for Convex QP Problems, Cutting-Plane Methods for CP Problems, Semidefinite and second-order cone programming: Primal and Dual SDP Problems, Primal-Dual Path-Following Method, Predictor-Corrector Method, Projective Method of Nemirovski and Gahinet, Second-Order Cone Programming. General nonlinear optimization problems: Sequential Quadratic Programming Methods, Modified SQP Algorithms, Interior-Point Methods	23
Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HomeWorks, Quizzes, Mini projects	During the semester	30%
2.	Midterm	Week 9-10	30%
3.	Final Exam	Week 15-16	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Andreas Antoniou, Wu-Sheng Lu, PRACTICAL OPTIMIZATION Algorithms and Engineering Application, Springer, 2007 J. Nocedal and S. J. Wright, Numerical Optimization; Springer, 2nd Ed. 2006.
Supportive References	 N. Gould and S. Leyffer, An Introduction to Algorithms for Nonlinear Optimization; Springer 2003. S. Chandra, Jayadev and Aparna Mehra, Numerical Optimization with Applications, Alpha Science Intl Ltd; 1st Ed., 2009.
Electronic Materials	None
Other Learning Materials	None

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology equipment (projector, smart board, software)	The rooms should be equipped with data show and Smart Board.
Other equipment	None
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Effectiveness of Students assessment	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
The extent to which CLOs have been achieved	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire

Assessment Areas/Issues	Assessor	Assessment Methods
		responses appraising progress and identifying changes that need to be made if necessary.
Other	None	

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
REFERENCE NO.	8/1446
DATE	05/04/1446 (08/10/2024)

