

Course Specification

— (Postgraduate Programs)

Course Title: Combinatorics

Course Code: MAT 7251

Program: Doctor of Philosophy in Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2024 – V1

Last Revision Date: None

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	6
G. Specification Approval	6

A. General information about the course:

1. Course Identification

1. 0	Credit hours:				
4 (4	Lectures, 0 Lab, 0 T	utorial)			
2. (Course type				
A.	\square University	☐ College	⊠ Program	☐ Track	☐ Others
В.	\square Required		⊠ Ele	ective	
3. L	.evel/Year at w	hich this cours	e is offered: Lev	el 3 / Year 2	
4. (Course general	Description:			
Topics in combinatorics will be covered. They include Techniques in counting, Inclusion-exclusion principle, Stirling Numbers, Group Class Equation and Cycle Index Theorem, Burnside's Lemma, Identities and Expansions, General and Multivariate Generating Functions, Recurrence Relations, Partitions of Integers, Ramsey's Theorem with Applications.					
5. Pre-requirements for this course (if any):					
None.					
6. Co-requisites for this course (if any):					
Non	e.				
7.0	Course Main Ob	pioctivo(s):			

7. Course Main Objective(s):

Combinatorics has many applications in sciences, e.g., in Computer Sciences, Probability and Operation Research. The objective of this course is to give a detailed knowledge within counting techniques, Striling numbers, Burnside's Lemma and some other interesting topics in combinatorics.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	0	0%
3	HybridTraditional classroom	0	0%
	E-learning		
4	Distance learning	0	0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	60
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0

Total 60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Describe problems in mathematics and natural sciences using combinatorics	K1, K2	4 lecture hours\week	Direct: Regular Exams
1.2	Reproduce recurrence relations and generating functions.	K1, K2	• 4 lecture hours\week • Self-study	Direct: Short Quizzes
2.0	Skills			
2.1	Develop techniques of proof in counting and permutation methods	S1, S2	Self-study	Direct: • Participations • Short Quizzes
2.2	Improve oral communication and technical writing skills through multivariate functions and recurrence relations.	S3	Real-life problems	Direct: Homework and Mini projects
2.3	Use Internet in searching for some related identities.	S4	Real-life problems	Direct: Short Quizzes
2.4	Demonstrate deep proofs of main theorems.	S1, S2	Self-study	Direct: Participations
3.0	Values, autonomy, and responsibility			
3.1	Work with independence and responsibility.	V1, V2	Personal questions	Direct: Participation
3.2	Lead team works.	V1, V3	Teamwork and class discussions.	Direct: Homework and Mini projects

C. Course Content

No	List of Topics	Contact Hours
	Counting and Inclusion Exclusion Principles.	
1.	Real Factorials and Stirling's Formula, Stirling Numbers of First and Second Kinds.	18

2.	Group Class Equation and Cycle Index Theorem, Counting by Permutation Methods. Burnside's Lemma, Identities and Expansions. General and Multivariate Generating Functions.	22
3.	Recurrence Relations. Partitions of Integers, Ramsey's Theorem with Applications.	20
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HomeWorks, Quizzes, Mini projects	During the semester	30%
2.	Midterm	Week 9-10	30%
3.	Final Exam	Week 15-16	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	• C. Charalambides, Enumerative Combinatorics, Chapman and Hall/CRC, 2002.
Supportive References	 M. Aigner, A Course in Enumeration, Springer, 2007. J. Van, R. Wilson, A Course in Combinatorics, Cambridge University Press, 2001.
	3. R. Brualdi, Introductory Combinatorics, 5th Ed., Prentice-Hall, 2009.
Electronic Materials	None
Other Learning Materials	None

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.

Items	Resources
Technology equipment (projector, smart board, software)	The rooms should be equipped with data show and Smart Board.
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Effectiveness of Students assessment	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
The extent to which CLOs have been achieved	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Other	None	•

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
REFERENCE NO.	8/1446
DATE	05/04/1446 (08/10/2024)

