





## **Course Specification**

- (Bachelor)

**Course Title: Thermal Physics** 

Course Code: PHY 1230

**Program: Bachelor of Science in Applied Mathematics** 

**Department: Physics** 

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 4

Last Revision Date: 26/09/2024





## **Table of Contents**

| A. General information about the course:                                       | 3 |
|--------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 |
| C. Course Content                                                              | 5 |
| D. Students Assessment Activities                                              | 6 |
| E. Learning Resources and Facilities                                           | 6 |
| F. Assessment of Course Quality                                                | 7 |
| G. Specification Approval                                                      | 7 |





| A. General information about the course:                                                                                                                                                                                                                         |                                                                                                              |                                                                             |                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1. Course Identification                                                                                                                                                                                                                                         |                                                                                                              |                                                                             |                                                                                                       |
| 1. Credit hours: (3)                                                                                                                                                                                                                                             |                                                                                                              |                                                                             |                                                                                                       |
|                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                             |                                                                                                       |
| 2. Course type                                                                                                                                                                                                                                                   |                                                                                                              |                                                                             |                                                                                                       |
| A. □University □ College                                                                                                                                                                                                                                         | □ Department                                                                                                 | □Track                                                                      | □Others                                                                                               |
| B.   Required                                                                                                                                                                                                                                                    | ⊠ Elect                                                                                                      |                                                                             |                                                                                                       |
| 3. Level/year at which this course                                                                                                                                                                                                                               | is offered: ( Leve                                                                                           | el 6-7/ Year 3                                                              | B-4 )                                                                                                 |
| 4. Course General Description: Thermal physics is a core subject in physics                                                                                                                                                                                      |                                                                                                              |                                                                             |                                                                                                       |
| principles of thermodynamics including sidepth, and mathematical tools are present Second laws of thermodynamics are intro-<br>energy, heat, entropy and the thermodynamics such as heat engines, the expansion of and associated properties of entropy, is into | ted to equip students oduced, along with t mic potentials. Appli of gases and changes o roduced. The kinetic | s for other appl<br>he concepts of<br>cations of therr<br>of phase are cons | lications. The First and<br>temperature, internal<br>nodynamic concepts to<br>sidered. The Third Law, |
| 5. Pre-requirements for this cours                                                                                                                                                                                                                               | · //                                                                                                         |                                                                             |                                                                                                       |
| General Physics, PHY 1101 and Calculus (2), MAT 1102                                                                                                                                                                                                             |                                                                                                              |                                                                             |                                                                                                       |
| 6. Co-requisites for this course (if any):                                                                                                                                                                                                                       |                                                                                                              |                                                                             |                                                                                                       |
|                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                             |                                                                                                       |
| 7. Course Main Objective(s):                                                                                                                                                                                                                                     |                                                                                                              |                                                                             |                                                                                                       |
| Demonstrate the basic concepts of the principles of thermodynamics.                                                                                                                                                                                              |                                                                                                              |                                                                             |                                                                                                       |
| State the basic principles of kinetic theory of gases for ideal and real gases.  Apply these principles in conjunction with elementary mathematical techniques to solve                                                                                          |                                                                                                              |                                                                             |                                                                                                       |

## 2. Teaching mode (mark all that apply)

simple problems in the basic four thermodynamic laws.

• Assess whether a solution to a given problem is physically reasonable.

| No | Mode of Instruction                                    | Contact Hours | Percentage |
|----|--------------------------------------------------------|---------------|------------|
| 1  | Traditional classroom                                  | 60            | 100%       |
| 2  | E-learning                                             |               |            |
| 3  | <ul><li>Hybrid</li><li>Traditional classroom</li></ul> |               |            |





| No | Mode of Instruction | Contact Hours | Percentage |
|----|---------------------|---------------|------------|
|    | E-learning          |               |            |
| 4  | Distance learning   |               |            |

#### **3. Contact Hours** (based on the academic semester)

| No    | Activity          | Contact Hours |
|-------|-------------------|---------------|
| 1.    | Lectures          | 30            |
| 2.    | Laboratory/Studio | 0             |
| 3.    | Field             | 0             |
| 4.    | Tutorial          | 30            |
| 5.    | Others (specify)  | 0             |
| Total |                   | 60            |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning<br>Outcomes                                                                                     | Code of PLOs<br>aligned with the<br>program | Teaching Strategies                                                                                                  | Assessment<br>Methods                                                                  |
|------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1.0  | Knowledge and understandi                                                                                       | ing                                         |                                                                                                                      |                                                                                        |
| 1.1  | Demonstrate the basic knowledge of the kinetic theory of gases.                                                 | K1, K2                                      | <ul><li>Lectures.</li><li>Tutorials.</li><li>Class discussions.</li></ul>                                            | <ul><li>Exams.</li><li>Participation.</li><li>Discussions.</li></ul>                   |
| 1.2  | Define and describe the laws of thermodynamics.                                                                 | K1, K2                                      | <ul><li>Lectures.</li><li>Tutorials.</li><li>Class discussions.</li></ul>                                            | <ul><li>Exams.</li><li>Homework.</li><li>Quizzes.</li></ul>                            |
| 1.3  | Outline the basic concepts of the special functions.                                                            | K1, K2                                      | <ul><li>Lectures.</li><li>Class discussions.</li><li>Tutorials.</li></ul>                                            | <ul><li>Participation.</li><li>Exams.</li><li>Discussions.</li><li>Homework.</li></ul> |
| 2.0  | Skills                                                                                                          |                                             |                                                                                                                      |                                                                                        |
| 2.1  | Explain and summarize the basic knowledge gained from studying waves and optical physics.                       | S1, S2                                      | <ul><li>Lectures.</li><li>Class discussions.</li><li>Tutorials.</li></ul>                                            | <ul><li>Exams.</li><li>Discussions.</li><li>Participation.</li></ul>                   |
| 2.2  | Develop the students ability to solve and analyze problems in physics related the topics covered by the course. | S2, S3                                      | <ul> <li>Problem classes and group tutorial.</li> <li>Homework assignments as well as problems solutions.</li> </ul> | <ul><li>Exams.</li><li>Discussions.</li><li>Homework.</li></ul>                        |
| 2.3  | Communicate in a clear and concise manner                                                                       | S4, S5                                      | <ul><li>Lectures.</li><li>Class discussions.</li></ul>                                                               | • Exams.                                                                               |

| Code | Course Learning<br>Outcomes                                                                                                   | Code of PLOs<br>aligned with the<br>program | Teaching Strategies                                                                                                                                                           | Assessment<br>Methods                                                                                                                       |
|------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|      | orally, and using IT for acquiring and analyzing information.                                                                 |                                             | <ul> <li>Tutorials.</li> <li>Encourage students to use electronic mail and internal network for submitting homework and assignments.</li> <li>Use digital library.</li> </ul> | <ul> <li>Participation<br/>and activities of<br/>students in the<br/>course<br/>community and<br/>blackboard.</li> <li>Homework.</li> </ul> |
| 3.0  | Values, autonomy, and resp                                                                                                    | onsibility                                  |                                                                                                                                                                               |                                                                                                                                             |
| 3.1  | Show the collaboration and inter-professionalism in class discussions or team works, as well as solve problems independently. | V1, V2, V3                                  | <ul><li>Small team tasks</li><li>Open discussion at classroom.</li><li>Office hours.</li></ul>                                                                                | <ul><li>Participation.</li><li>Homework.</li><li>Mini-project(s).</li></ul>                                                                 |

#### **C. Course Content**

| No | List of Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contact Hours |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. | Nature of Thermodynamics and Equations of State: Definitions: System, Surroundings, Boundary, Open system, Closed system, Isolated system, Extensive property, Intensive property, State of a system at equilibrium, Processes (quasi-static, reversible, irreversible, adiabatic, isobaric, isothermal, isochoric, cyclic), Heat reservoir. Temperature and the zero law of thermodynamics, Equation of state of an ideal gas, Van Der Waals' equation for a real gas, Expansivity and compressibility.    | 14            |
| 2. | <b>First Law of Thermodynamics and Applications:</b> Exact and inexact differentials, Work (reversible and irreversible processes), Adiabatic work and internal energy, Heat, Mechanical equivalent of Heat, Heat capacity, Mayer's equation, Enthalpy and heats of transformation, Relationships involving enthalpy, Gay-Lussac-Joule experiment, Joule-Thomson experiment.                                                                                                                                | 12            |
| 3. | <b>Second Law of Thermodynamics and Applications:</b> Different statements of the second law (Kelvin statement and Clausius statement) Heat engines and the Carnot cycle Irreversible processes, Carnot's theorem, Clausius inequality and the second law, Entropy change in reversible and irreversible processes, Entropy change of the surroundings for a reversible process, TdS equations, Entropy change of an ideal gas, Entropy change for a liquid or solid, Entropy change for a liquid or solid. | 12            |
| 4. | Thermodynamic Potentials and the Third law of Thermodynamics:Legendre transformation, Definition of the thermodynamic potentials, Maxwell relations, Helmholtz function, Gibbs function, Chemical potential, Phase equilibrium, Mixing processes, Statements of the third law, Equivalence of the statements, Consequences of the third law.                                                                                                                                                                | 12            |





| 5. | <b>Kinetic Theory of Gases: Basic assumptions:</b> Molecular flux, Gas pressure and the ideal gas law, Equipartition of energy, Specific heat capacity of an ideal gas, Distribution of molecular speeds, Mean free path and collision frequency. | 10 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Total                                                                                                                                                                                                                                             | 60 |

#### **D. Students Assessment Activities**

| No | Assessment Activities *                                           | Assessment<br>timing<br>(in week no) | Percentage of Total Assessment Score |
|----|-------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| 1. | Class Activities (class quizzes, homework, solving problems, etc) | weekly                               | 10 %                                 |
| 2. | Midterm Exam 1                                                    | 6 <sup>th</sup> week                 | 25 %                                 |
| 3. | Midterm Exam 2                                                    | 12 <sup>th</sup> week                | 25 %                                 |
| 4. | Final Exam                                                        | 16th week                            | 40 %                                 |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

#### **E. Learning Resources and Facilities**

### **1. References and Learning Resources**

| Essential References     | <ul> <li>Roy B. N, Fundamental of classical and statistical thermodynamics, J. Wiley&amp; Sons, UK (2002).</li> <li>Schvoder D.V, An introduction to thermal physics, Adison Wesley Longman USA (2000).</li> <li>Russell L.D, Classical thermodynamics, Inter Edition Saunders College Publ., USA (1993).</li> </ul> |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Supportive References    | Kittel C. and Kroemer H., <i>Thermal Physics,</i> W. H. Freeman and Company, New York (1980).                                                                                                                                                                                                                        |  |
| Electronic Materials     | https://units.imamu.edu.sa/colleges/en/science/Pages/default<br>.aspx                                                                                                                                                                                                                                                |  |
| Other Learning Materials |                                                                                                                                                                                                                                                                                                                      |  |

## 2. Required Facilities and equipment

| Items                                                                           | Resources                                               |
|---------------------------------------------------------------------------------|---------------------------------------------------------|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | - Classrooms.<br>- Labs.                                |
| Technology equipment (projector, smart board, software)                         | - Classroom equipped with a whiteboard and a projector. |



| Items                                      | Resources |
|--------------------------------------------|-----------|
| Other equipment                            |           |
| (depending on the nature of the specialty) |           |

## F. Assessment of Course Quality

| Assessment Areas/Issues                     | Assessor                       | Assessment Methods                                                                                                       |
|---------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Effectiveness of teaching                   | Students<br>Second examiner    | Indirect (The students complete the evaluation forms at the end of term. Final exam is evaluated by the second examiner) |
| Effectiveness of                            | Instructors                    | Direct (exams, HW,                                                                                                       |
| Students assessment                         |                                | project,)                                                                                                                |
| Quality of learning resources               | Faculty<br>Students            | indirect (surveys)                                                                                                       |
| The extent to which CLOs have been achieved | Instructors<br>Program Leaders | Direct (excel sheet)                                                                                                     |
| Other                                       |                                |                                                                                                                          |

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

## **G. Specification Approval**

| COUNCIL /COMMITTEE | Quality Unit-Physics Department |
|--------------------|---------------------------------|
| REFERENCE NO.      | Department council No. 06       |
| DATE               | 26/09/2024                      |

