

Course Specification

- (Bachelor)

Course Title: Modern Physics

Course Code: PHY 1250

Program: Bachelor of Science in Applied Mathematics

Department: Physics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 4

Last Revision Date: 26/09/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General informat	ion about the c	course:		
1. Course Identificat	ion			
1. Credit hours: (3)			
2. Course type				
A. University	☐ College	□ Department	□Track	□Others
B. Required		⊠ Elect	ive	
3. Level/year at wh	nich this course	is offered: (Leve	l 6-7/ Year 3-4)	
4. Course General I	Description:			
This course provides an have radically altered of basic physics and calcuframework for understawith emphasis on quant of atoms, which includes examined.	our view of nature. ulus courses. Relati anding the physics c um mechanical not	This course is intend ivity and quantum id of atom and nuclei. Th ions. Next comes a dis	ed for students who eas are considered e theory of the aton cussion of the prope	have already had first to provide and is then developed erties of aggregates
5. Pre-requirement	ts for this cours	Se (if any):		
Classical Mechanics (1),	PHY 1105			
6. Co-requisites for	this course (if a	ny) :		

7. Course Main Objective(s):

- State the basic principles of special relativity and elementary quantum mechanics and the regimes in which the different theories apply.
- Apply these principles in conjunction with elementary mathematical techniques to solve simple problems in relativistic and quantum mechanics.
- Present a solution to a physics problem in a clear and logical written form.
- Take responsibility for learning by attending lectures and workshops, and completing coursework.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning		
3	HybridTraditional classroom		

No	Mode of Instruction	Contact Hours	Percentage
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	30
5.	Others (specify)	0
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understandi	ing		
1.1	Statethe basic knowledge of the molecular and nuclear structure.	K1, K2	Lectures.Tutorials.Class discussions.	Exams.Participation.Discussions.
1.2	Describe the basics of quantum theory of light and atomic structure.	K1, K2	Lectures.Tutorials.Class discussions.	Exams.Homework.Quizzes.
1.3	Outline the scientific foundation for applications of modern physics.	K1, K2	Lectures.Class discussions.Tutorials.	Participation.Exams.Discussions.Homework.
2.0	Skills			
2.1	Explain and summarize the basic knowledge gained from studying waves and optical physics.	S1, S2	Lectures.Class discussions.Tutorials.	Exams.Discussions.Participation.
2.2	Develop the students ability to solve and analyze problems in physics related the topics covered by the course.	S2, S3	 Problem classes and group tutorial. Homework assignments as well as problems solutions. 	Exams.Discussions.Homework.

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
2.3	Communicate in a clear and concise manner orally, and using IT for acquiring and analyzing information.	S4, S5	 Lectures. Class discussions. Tutorials. Encourage students to use electronic mail and internal network for submitting homework and assignments. Use digital library. 	 Exams. Participation and activities of students in the course community and blackboard. Homework.
3.0	Values, autonomy, and responsibility			
3.1	Show the collaboration and inter-professionalism in class discussions or team works, as well as solve problems independently.	V1, V2, V3	Small team tasksOpen discussion at classroom.Office hours.	Participation.Homework.Miniproject(s).

C. Course Content

No	List of Topics	Contact Hours
1.	Relativity: Einstein's principle of special relativity, consequences of special relativity, Lorentz transformation equations, Relativistic momentum and relativistic form of Newton's laws, Relativistic energy, Equivalence of mass and energy.	14
2.	Quantum Theory of Light: Particle properties of waves, Blackbody radiation and Planck's hypothesis, Photoelectric effect, Explanation of the photoelectric effect, X-rays and some applications, Compton effect, Pair production.	14
3.	Introduction to Quantum Physics: Photons and electromagnetic waves, Wave properties of particles, De Broglie waves, Matter waves, Electron microscope, Uncertainty principle.	12
4.	Atomic Structure: Particle nature of matter, Early models of the atom, Bohr's quantum model of the hydrogen atom, Atomic spectra and transitions, Nuclear effects on spectral lines, Franck-Hertz experiment.	10
5.	Molecular and nuclear Structure: Molecular bonding, Energy states and spectra, Molecular vibration and rotation, Electronic transitions in molecules. Nuclear Structure: Nuclear composition, Some properties of nuclei, Binding energy and radioactivity.	10
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Class Activities (class quizzes, homework, solving problems, etc)	weekly	10 %
2.	Midterm Exam 1	6 th week	25 %
4.	Midterm Exam 2	12 th week	25 %
5.	Final Exam	16 th week	40 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Serway R.A., <i>Modern Physics</i>, Brooks Cole; 3rd Edition (2004). Krane K., <i>Modern Physics</i>, Wiley, New York (1983).
Supportive References	- Beiser A. and Berg I., <i>Concepts of Modern Physics</i> , 6 th Edition, McGraw-Hill, Inc (2006).
Electronic Materials	https://units.imamu.edu.sa/colleges/en/science/Pages/default .aspx
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	- Classrooms. - Labs.
Technology equipment (projector, smart board, software)	- Classroom equipped with a whiteboard and a projector.
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	StudentsSecond examiner	- Indirect (The students complete the evaluation forms at the end of term.

Assessment Areas/Issues	Assessor	Assessment Methods
		- Final exam is evaluated by the second examiner)
Effectiveness of Students assessment	- Instructors	- Direct (exams, HW, project,)
Quality of learning resources	FacultyStudents	- Indirect (surveys)
The extent to which CLOs have been achieved	InstructorsProgram Leaders	- Direct (excel sheet)
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Quality Unit-Physics Department
REFERENCE NO.	Department council No. 06
DATE	26/09/2024

