

Course Specifications

Course Title:	Calculus (1)
Course Code:	MAT 1101
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes3	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content4	
D. Teaching and Assessment4	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support5	
F. Learning Resources and Facilities5	
1.Learning Resources	5
2. Facilities Required	6
G. Course Quality Evaluation6	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: 5 (4 Lectures, 0 Lab, 2 Tutorial)		
2. Course type		
a. University College Department ✓ Others		
b. Required Elective		
3. Level/year at which this course is offered: Level 1 / Year 1		
4.Pre-requisites for this course (if any): None		
5. Co-requisites for this course (if any):		
None		

6. Mode of Instruction (mark all that apply)

1	11 37		
No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

This course describes the most important ideas, theoretical results, and examples of limit, continuity, differentiation and its applications for functions with one variable. The course includes the essential fundamentals of these topics. The emphasis is on calculations, and some applications are mentioned.

2. Course Main Objective

Understanding basics of differentiation and integration and their applications which are essential to proceed to next courses in all programs.

3. Course Learning Outcomes

CLOs Upon successful completion of this course, students will be able to:		Aligned-PLOs
1	Knowledge and Understanding	
1.1	Identify various types of limits of functions of one variable (graphically, numerically and algebraically)	K1, K2
1.2	Describe different techniques of differentiation and its applications.	K1, K2

Upon	CLOs Upon successful completion of this course, students will be able to:	
2	Skills:	
2.1	Use differentiation and integration to solve real world problems such as rate of change, optimization, and area problems.	S1, S2
2.2	Demonstrate the connection between area and the definite integral through Fundamental theorem of Calculus.	S4
2.3	Draw graphs of functions handily and by using CAS and online solvers.	S5
2.4	State, clearly and precisely both orally and in writing, areas and definite integrals by Riemann sums	S3
3	Values:	
3.1	Work individually.	V1, V3
3.2	Develop personal values and attributes such as honesty, empathy and respect for others.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Preliminaries: Solving Linear Equations and Inequalities, Absolute value, Solving Inequalities Containing an Absolute Value, Equations of lines, Quadratic Equations and Inequalities, Special Product Formulas, Polynomials, Factoring Polynomials; Functions: Domain, Range, and graphs of functions, Common Functions, Composition of functions, Inverse function; Trigonometry: Unit Circle, Angles and their Measurements, Solving Equations Involving Sines and Cosines, Important Trigonometric Identities, Trigonometric Functions (Sine, Cosine, and Tangent Function), Inverses Trigonometric Functions, Exponential and Logarithmic Functions, Laws of Exponents and Logarithms.	20
2	Limits and Continuity: The Concept of Limit, Formal definition of limit, Limit Theorems, Limits Involving Infinity, Asymptotes, The natural number e as a limit, Continuity of functions, Operations on continuous functions, Intermediate value theorem, The Bisection Method, Formal definition of the limit.	16
3	Differentiation: Tangent Lines and Velocity, The Derivative, Computation of Derivatives: The Power Rule, Higher Order Derivatives, The Product and Quotient Rules, The Chain rule, Derivatives of Trigonometric Functions and their inverses, Derivatives of Exponential and Logarithmic Functions, Implicit Differentiation, The Rule Theorem, The Mean Value Theorem.	18
4	Applications of Differentiation: Indeterminate Forms and L'Hopital's Rule, Maxima and minima values, Monotonic functions and the first derivative test, Concavity and the second derivative test, Graphing functions.	18
	Total	72

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.1	Identify various types of limits of functions of one variable (graphically, numerically and algebraically)	• 4 lecture hours\week • 2 tutorial hours\week	• Regular Exams • Assignments • Short Quizzes
1.2	Describe different techniques of differentiation and its applications.	Self-study	Short Quizzes
2.0	Skills		
2.1	Use differentiation and integration to solve real world problems such as rate of change, optimization, and area problems.	• Self-study • Real-life problems	• Participations • Short Quizzes
2.2	Demonstrate the connection between area and the definite integral through Fundamental theorem of Calculus.	Self-study	Participations
2.3	Draw graphs of functions handily and by using CAS and online solvers.	Real-life problems	Short Quizzes
2.4	State, clearly and precisely both orally and in writing, areas and definite integrals by Riemann sums	Self-study	Participations
3.0	Values		
3.1	Work individually.	Personal questions	Participation
3.2	Develop personal values and attributes such as honesty, empathy and respect for others.	Team work and class discussions.	Homework and Mini-projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homeworks, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

Danis d'Esséla de	<i>Calculus</i> , 4th Edition, R. T. Smith, R. B. Minton, McGraw-Hill, 2012.
Required Textbooks	(Main Reference)

Essential References Materials	 Calculus; O. Swokowski, et al, PWS Pub. Co.; 6th Edition, 1994. Calculus: Early Transcendentals, 7th Edition; C. Henry Edwards, David E. Penney, Pearson Prentice Hall, 2008. Essential Calculus with Application; Richard A. Silverman, Dover Publications, 1989. Schaum's Outline of Calculus, 6th Edition; Frank Ayres, Elliott Mendelson, McGraw-Hill, 2013.
Electronic Materials	None
Other Learning Materials	None

2. Facilities Required

- Lucinico Trequireu			
Item	Resources		
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection. 		
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.		
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.		

G. Course Quality Evaluation

ourse Quarty Dymanton				
Evaluation Areas/Issues	Evaluators	Evaluation Methods		
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.		
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.		

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title: Calculus (2)

Course Code: MAT 1102

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	4
D. Teaching and Assessment	5
1. Alignment of Course Learning Outcomes with Teaching Strateg Methods	gies and Assessment 5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	6
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation	7
H. Specification Approval Data	7

A. Course Identification

1. Credit hours:	5 (4 Lectures, 0 Lab, 2 Tutorial)		
2. Course type			
a. Universit	y College Department Others		
b. Re	equired		
3. Level/year at which this course is offered: Level 2 / Year 1			
4.Pre-requisites for this course (if any): MAT 1101			
5. Co-requisites for this course (if any):			
None			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

This course describes the most important ideas, theoretical results, and examples of integration technics, infinite series, and parametric equations. The course includes the essential fundamentals of these topics. The emphasis is on calculations, and some applications are mentioned.

2. Course Main Objective

- To understand the meaning of definite integral as a limit of Riemann sum.
- To learn different techniques of integration.
- To understand the applications of definite integrals to physics and Engineering.
- To develop the basics of the calculus of infinite series, and their applications.

3. Course Learning Outcomes

	CLOs	
Uı	Aligned-PLOs	
1	Knowledge and Understanding:	
1.1	Identify different techniques of integration and improper integrals.	K1, K2
1.2	List theorems and tests of convergence of sequences and series.	K1, K2
2	Skills:	
2.1	Use the concepts of definite integrals to solve problems involving area, volume, work, and other physical applications.	S1, S2
2.2	Apply the concepts of limits, convergence, and divergence to evaluate some classes of infinite series and/or improper integrals.	S4
2.3	Illustrate the revolution of a solid region using CAS and online solvers.	S5
2.4	State clearly and precisely both orally and in writing, Taylor or MacLaurin series to estimate the representation of functions as power series.	83
3	Values:	
3.1	Shows self-reliance when working independently.	V1, V3
3.2	Develop constructive and supportive relationships with classmates.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Integration: Anti-derivatives, Indefinite Integral and its properties, Sums and Sigma Notation, Partitions and Riemann sums, Area under curves and The Definite Integral, First and Second Fundamental Theorems of Calculus.	
2	Integration Techniques: Integration by Substitution, Integration by Parts, Integration of Rational Functions Using Partial Fractions, Trigonometric Techniques of Integration, Integrals involving logarithmic, exponential, and hyperbolic functions, Improper Integrals.	18
3	Applications of Definite Integrals: Area between curves, Volumes by slicing, Volumes using Cylindrical Shells, Arc Length and Surface Area.	
4	Infinite Series: Sequences of Real Numbers, Convergence and Divergence of Infinite Sequences, Formal definition of a convergent sequence, Infinite Series, Basic Infinite Series (geometric series, pseries, alternating series, telescoping series), Convergence Tests for Positive Series (ratio test, root test, comparison and limit comparison test, integral test), Alternating Series, Absolute and Conditional Convergence, Power Series, Differentiation ad Integration of power series, Taylor and Maclaurin Series, Convergence of Taylor series, Applications of Taylor and Maclaurin Series.	20
5	Parametric equations: Plane Curves and Parametric Equations, Calculus and Parametric Equations, Arc Length and Surface in Parametric Equations.	10
Total		

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding:		
1.1	Identify different techniques of integration and improper integrals.	•4 lecture hours\week	•Regular Exams
1.2	List theorems and tests of convergence of sequences and series.	tutorial hours\weekSelf-study	• Assignments • Short Quizzes
2.0	Skills		
2.1	Use the concepts of definite integrals to solve problems involving area, volume, work, and other physical applications.	• Self-study • Real-life problems	ParticipationsShort Quizzes
2.2	Apply the concepts of limits, convergence, and divergence to evaluate some classes of infinite series and/or improper integrals.	Self-study Real-life problems	Participations Short Quizzes
2.3	Illustrate the revolution of a solid region using CAS and online solvers.	Self-study Real-life problems	Participations Short Quizzes
2.4	State clearly and precisely both orally and in writing, Taylor or MacLaurin series to estimate the representation of functions as power series.	Self-study Real-life problems	Participations Short Quizzes
3.0	Values		
3.1	Shows self-reliance when working independently.	Class discussion	Participation
3.2	Develop constructive and supportive relationships with classmates.	Team work	Homework and Mini-projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

Required Textbooks	<i>Calculus</i> , 4th Edition; R. T. Smith, R. B. Minton, McGraw-Hill, 2012. (Main Reference)	
Essential References Materials	 Essential Calculus with Application; Richard A. Silverman, Dover Publications, 1989. Calculus; O. Swokowski, et al, PWS Pub. Co.; 6th Edition, 1994. Calculus: Early Transcendentals, 7th Edition; C. Henry Edwards, David E. Penney, Pearson Prentice Hall, 2008. Schaum's Outline of Calculus, 6th Edition; Frank Ayres, Elliott Mendelson, McGraw-Hill, 2013. 	
Electronic Materials	None	
Other Learning Materials	None	

2. Facilities Required

. racinites required		
Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection. 	
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	cil / Committee MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL	
Reference No.	11/1444	
Date	22/04/1444 (16/11/2022)	

Course Title:	Foundations of Mathematics
Course Code:	MAT 1151
Program:	Bachelor of Science in Applied Statistics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	17
B. Course Objectives and Learning Outcomes17	
1. Course Description	17
2. Course Main Objective	17
3. Course Learning Outcomes	18
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	19
2. Assessment Tasks for Students	20
E. Student Academic Counseling and Support20	
F. Learning Resources and Facilities20	
1.Learning Resources	20
2. Facilities Required	21
G. Course Quality Evaluation21	
H. Specification Approval Data21	

A. Course Identification

1. Credit hours: 5 (4 Lectures, 0 Lab, 2 Tutorial)				
2. Course type				
a. University College Department ✓	Others			
b. Required ✓ Elective	_			
3. Level/year at which this course is offered: Level 3 / Year 1				
4.Pre-requisites for this course (if any): None				
5. Co-requisites for this course (if any): None				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

This course describes the most important ideas, theoretical results, and examples of logic, set theory, methods of proof, relations, functions and basics of algebraic structures limit. The course includes the essential fundamentals of these topics. The emphasis is on step by step reasoning and mathematical thinking.

2. Course Main Objective

- To give students the rudiments of mathematical logic and set theory.
- To introduce the important concepts of relations, functions, and binary operations.

• To expose students to some abstraction by presenting the group concept and studying some of its elementary properties. To learn about vector calculus.

3. Course Learning Outcomes

J. CU	urse Learning Outcomes	
CLOs Upon successful completion of this course, students will be able to:		Aligned PLOs
1	Knowledge and Understanding	
1.1	Reproduce proofs of basic set-theoretic identities involving unions, intersections, and Cartesian products.	K1, K2
1.2	Recognize the concept of Logic including truth table logical statement, set theory ,method of proofs and basics of algebraic structures.	K1, K2
2	Skills	
2.1	Construct proofs using a variety of proof techniques including: direct proofs, proofs by contraposition and contradiction, proofs by mathematical induction to solve a given problem.	S1, S2
2.2	Formulate in logical the negation, converse, and contrapositive of a quantified implication, both linguistically and in Mathematical symbolic form.	S4
2.3	Analyze carefully abstract proofs to provide appropriate instances.	S5
2.4	Present proofs both orally and in written form using correct and concise English and mathematical grammar.	S3
3	Values:	
3.1	Aspire to improve and develop, learning from mistakes;	V1, V3
3.2	Engage in group discussions and critical interactions.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Logic: Statements, Negation, and Compound Statements, Truth Tables and Logical Equivalences, Conditional and Biconditional Statements, Open Statements and Quantifiers.	12
2	Set Theory: Sets and Subsets, Operations on Sets, Generalized Set Union and Intersection, Cartesian Product.	9

No	List of Topics	Contact Hours
3	Methods of Proofs: Direct proof method; Contrapositive proof method; Proof by contradiction; If and only if proof; Existence proof and counterexample method; Mathematical induction and its strong version.	15
4	Relations: Binary Relations, Reflexive, Symmetric, antisymmetric, and Transitive Relations, Equivalence Relations, Equivalence Classes, and Partitions, The Order Relations.	15
5	Functions: Functions, Onto Functions, One-to-One Functions, The bijection function, Inverse of a Function, Images and Inverse Images of Sets, Denumerable and Countable Sets, Uncountable Sets.	9
6	Basics of Algebraic Structures: Binary operations; Semigroups and Groups; Subgroups and Cyclic Groups; Rings, Integral Domains and Fields.	12
	Total	

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods		
1.0	Knowledge and Understanding				
1.1	Reproduce proofs of basic set- theoretic identities involving unions, intersections, and Cartesian products.	 2 lecture hours\week 2 tutorial hours\week Self-study 	• Regular Exams • Assignments • Short Quizzes		
1.2	Recognize the concept of Logic including truth table logical statement, set theory ,method of proofs and basics of algebraic structures.	• 2 lecture hours\week • 2 tutorial hours\week Self-study	• Regular Exams • Assignments Short Quizzes		
2.0	Skills				
2.1	Construct proofs using a variety of proof techniques including: direct proofs, proofs by contraposition and contradiction, proofs by mathematical induction to solve a given problem.	• Self-study • Real-life problems	• Participations • Short Quizzes		
2.2	Formulate in logical the negation, converse, and contrapositive of a quantified implication, both linguistically and in Mathematical symbolic form.	Self-study Real-life problems	Participations		
2.3	Analyze carefully abstract proofs to provide appropriate instances.	Self-study Real-life problems	Short Quizzes		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.4	Present proofs both orally and in written form using correct and concise English and mathematical grammar.	Self-study Real-life problems	Participations
3.0	Values		
3.1	Aspire to improve and develop, learning from mistakes;	Class discussion	Participation
3.2	Engage in group discussions and critical interactions.	Team work and class discussion.	Homework and Mini- projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homeworks, Quizzes, Mini-projects	During the semester	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks 1. Introduction to Mathematical Proofs: A Transition Roberts; Champan & Hall/CRC 2010. (Main Reference 2. A Primer for Logic and Proof, H. P. Hirst and J. L. Webdraft, (2011-2012 Ed.), 2012.		
Essential References Materials	 Mathematical Thinking & Writing: A transition to Abstract Math, R. Maddox, Academic Press, 2002. Mathematical Proofs: A Transition to Advanced Mathematics, 3rd Edition, Gary Chartrand, Albert D. Polimeni, Ping Zhang, Pearson, 2014. 	
Electronic Materials	None	
Other Learning Materials	None	

2. Facilities Required

2. I delittes itequii ed	
Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources.	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources.	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

1 11 11 11 11 1	FF
Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title:	Calculus (3)
Course Code:	MAT 1203
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strateg Methods	ies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Credit hours: 5 (4 Lectures, 0 Lab, 2 Tutorial)				
2. Cour	se type			
a.	University	College Department Otl	hers	
b.	Required	☐ Elective		
3. Level/year at which this course is offered: Level 4 / Year 2				
4.Pre-requisites for this course (if any): MAT 1102				
5. Co-requisites for this course (if any):				
None				

6. Mode of Instruction (mark all that apply)

0. 1,100	e of first action (mark an mat appry)	, ,	
No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

Creating a deep background of multivariable calculus and its applications which is essential to proceed to next courses.

2. Course Main Objective

- To demonstrate ability to work with different geometries in the space.
- To study functions of several variables and partial differentiation.
- To be able to set up and compute multiple integrals in rectangular, polar, cylindrical and spherical coordinates.
- To master the vector operations in different coordinate systems.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding	
1.1	Describe parametric and polar curves in plane and recognize regions and quadric surfaces in space.	K1, K2
1.2	Express double and triple integrals in different coordinate systems. in rectangular, polar, cylindrical, and spherical.	K1, K2
2	Skills:	
2.1	Apply the computational and conceptual principles of vector calculus, including partial derivatives and multiple integrals, to the solutions of various problems	S1, S2
2.2	Interpret, clearly and precisely both orally and in writing, calculus operations on vector-valued functions including limits, derivatives, integrals, curvature, and the description of motion in plane and space.	S4
2.3	Illustrate figures in different coordinates using a CAS and some online solvers.	S5
2.4	Calculate arc length /surface/volume of regions in 2 and 3 dimensions, in Cartesian, polar, cylindrical, and spherical coordinate systems, directional derivatives, equations of tangent planes, and gradient vectors.	S3
3	Values:	
3.1	listen to the teacher's explanation of the Mathematics reasoning and illustration of 3D figures.	V1, V3
3.2	Show attitude of support the use of computers in learning/teaching mathematics	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Vectors and Geometry of Space: Vectors in Space, Dot Product, Cross Product, Equations of Lines and Planes in Space, Quadratic Surfaces in Space.	14
2	Vector-Valued Functions: Vector-Valued Functions, Calculus of Vector Functions, Motion in Space, Curvature, Tangent and Normal Vectors.	14
3	Functions of several variables: Functions of Several Variables, Limits and Continuity, Partial Derivatives, Differentiability, The Total Derivative, The Directional Derivatives and Gradient, Tangent Plane and Linear Approximation, Taylor's Theorem in Severable variables, Chain Rule, Maxima and Minima, Method of Lagrange Multipliers.	22
4	Multiple Integrals: Double Integrals in Cartesian Coordinates, Areas and Volumes, Polar Coordinates, Double Integrals in Polar Coordinates, Surface Area, Triple Integrals in Cartesian Coordinates, Cylindrical and Spherical Coordinates, Triple Integrals in Cylindrical and Spherical Coordinates, Change of Variables in Multiple Integrals.	22
	Total	72

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies		Assessment Methods		
1.0	Knowledge and Understanding					
1.1	Describe parametric and polar curves in plane and recognize regions and quadric surfaces in space.		lecture hours\week tutorial hours\week Self-study	• Regular Exams • Assignments • Short Quizzes		
1.2	Express double and triple integrals in different coordinate systems. in rectangular, polar, cylindrical, and spherical. tutor hour		lecture hours\week tutorial hours\week Self-study	• Regular Exams • Assignments Short Quizzes		
2.0	Skills:					
2.1	Apply the computational and coprinciples of vector calculus, including derivatives and multiple integrals solutions of various problems.	• Self-study • Real-life problems	ParticipationsShort Quizzes			
2.2	Interpret, clearly and precisely both orally and in writing, calculus operations on vector-valued functions including limits, derivatives, integrals, curvature, and the description of motion in plane and space.		Self-study	Participations		
2.3	Illustrate figures in different coordinates using a CAS and some online solvers.		Real-life problems	Short Quizzes		
2.4	Calculate arc length /surface/volume of regions in 2 and 3 dimensions, in Cartesian, polar, cylindrical, and spherical coordinate systems, directional derivatives, equations of tangent planes, and gradient vectors.		Self-study	Participations		
3.0	Values:					
3.1	listen to the teacher's explanation Mathematics reasoning and illustratifigures.		Class discussion	Participation		
3.2	Show attitude of support the use of coin learning/teaching mathematics	omputers	Problem solving, Class discussion	Homework and Mini-projects and presentation		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources	
Required Textbooks	• <i>Calculus,</i> 4 th Edition; R. T. Smith, R. B. Minton, McGraw-Hill, 2012. (Main Reference)
Essential References Materials	 Advanced Engineering Mathematics, 8th Edition, E. Kreyszig, John Wiley & Sons, INC, 1998. Calculus, 6th Edition, O. Swokowski, et al, PWS Pub. Co., 1994. Calculus Early Transcendentals, 7th Edition; C. Henry Edwards, David E. Penney, Prentice Hall, 2008. Calculus, 1st Edition, F. Ayres & E. Mendelson, Schaum's Outline McGraw-Hill, 1999.
Electronic Materials	None
Other Learning Materials None	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title:	Linear Algebra
Course Code:	MAT 1223
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3	
6. Mode of Instruction (mark all that apply)		3
B. Course Objectives and Learning Outcomes	3	
1. Course Description		3
2. Course Main Objective		3
3. Course Learning Outcomes		3
C. Course Content	4	
D. Teaching and Assessment	4	
 Alignment of Course Learning Outcomes with Teaching Strategies an Methods 	nd Assessment	4
2. Assessment Tasks for Students		5
E. Student Academic Counseling and Support	5	
F. Learning Resources and Facilities	5	
1.Learning Resources		5
2. Facilities Required		5
G. Course Quality Evaluation	6	
H. Specification Approval Data	6	

A. Course Identification

1. Credit	hours: 5	4 Lectures, 0 Lab, 2 Tutorial)		
2. Course	type			
a.	University	College Department	Others	
b.	Required	☐ Elective		
3. Level/year at which this course is offered: Level 4 / Year 2				
4.Pre-requisites for this course (if any): MAT 1151				
5. Co-requisites for this course (if any):				
None				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

This course describes the most important ideas, theoretical results, and examples of matrices, vector spaces, linear transformations, eigenvalues and eigenvectors. The course includes the essential fundamentals of these topics. The emphasis is on calculations.

2. Course Main Objective

- To provide students with a good understanding about matrices concept and methods of linear algebra
- To let students be familiar with basics of vector spaces and linear transformations.
- To connect linear algebra to other fields.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
Upon	Upon successful completion of this course, students will be able to:	
1	Knowledge and Understanding	
1.1	Recognize concept of concepts of linear algebra matrix and determinant and eigenvalues.	K1, K2
1.2	Identify structure and features of vector space and linear dependence and linear independence.	K1, K2
2	Skills:	
2.1	Find inverse of a square matrix by using its determinant and extension matrix to solve some world-real problems.	S1, S2
2.2	State, clearly and precisely both orally and in writing, the general solution of at most a 4×4 linear system using appropriate method of linear algebra matrix including Gaussian elimination and matrix inversion.	S4
2.3	Use CAS and online solver to manipulate matrices.	S5
2.4	Compute eigenvalues and eigenvectors of square matrix to produce the diagonalization of the matrix.	S3
3	Values:	
3.1	Work individually and in group	V1, V3
3.2	Show attitude of support the use of computers in Matrix manipulation.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Matrices and Gauss Elimination: Linear Systems and Matrices (Gauss Eliminations, Echelon & Reduced Echelon Forms, Matrix Operations, Matrix Inverses), Determinants (Minor & Cofactors, Evaluating Determinants, Cramer's Rule, Adjoints & Matrix Inverses).	20
2	Vector Spaces: Spaces $\mathbb{R}2$ & $\mathbb{R}3$ and their Geometry, Vector Spaces and Subspaces, Euclidean Vector Spaces $\mathbb{R}n$, Linear Dependence & Independence, Basis and Dimensions of Vector Space, Change of a Basis- Inner Products (Norms, Angle and Orthogonality).	
3	Linear Transformations: Definition and Basics, The Kernel and the Image, Linear Transformation Matrix, Nonsingular Transformations and their Inverses, The Direct Sum, The Dimension Theorem.	18
4	Eigenvalues and Eigenvectors: Characteristic Polynomial, Eigenvalues, Eigenvectors, Diagonalization, Triangulation, Matrix Powers.	14
	Total	72

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Recognize concept of concepts of linear algebra matrix and determinant and eigenvalues.		• Regular Exams • Assignments • Short Quizzes

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
		•Self-study	
1.2	Identify structure and features of vector space and linear dependence and linear independence.	4 lecture hours\week2 tutorial hours\weekSelf-study	• Regular Exams • Assignments Short Quizzes
2.0	Skills:		
2.1	Find inverse of a square matrix by using its determinant and extension matrix to solve some world-real problems.	• Self-study • Real-life problems	• Participations • Short Quizzes
2.2	State, clearly and precisely both orally and in writing, the general solution of at most a 4×4 linear system using appropriate method of linear algebra matrix including Gaussian elimination and matrix inversion.	Regular Exams	Participations
2.3	Use CAS and online solver to manipulate matrices.	Assignments	Short Quizzes
2.4	Compute eigenvalues and eigenvectors of square matrix to produce the diagonalization of the matrix.	Short Quizzes	Participations
3.0	Values:		
3.1	Work individually and in group	Class activities	Individual and group coursework
3.2	Show attitude of support the use of computers in Matrix manipulation.	Class discussion	participation

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

Learning Resources		
Required Textbooks	 Elementary Linear Algebra; 11th Edition; H. Anton, C. Rorres, Wiley, 2014. (Main Reference) 	
Essential References Materials	 Linear Algebra with Application, 5th Edition; W. K. Nicholson, McGraw- Hill, 2006. Linear Algebra with Application, 4th Edition; O. Bretscher; Pearson Ed. Int., 2009. Linear Algebra, Schaum's Outline, S. Lipschutz, M. Lipson, McGraw-Hill 3rd Edition, 2000 	
Electronic Materials	None	
Other Learning Materials	None	

2. Facilities Required

2. Facilities Keyuli eu	
Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title:	Introduction to Number Theory
Course Code:	MAT 1225
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strate Methods	egies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Cred	it hours: 4 (3 Lectures, 0 Lab, 2 Tutorial)	
2. Cou	se type	
a.	University College Department	Others
b.	Required	
3. Level/year at which this course is offered: Level 6 / Year 2		
4.Pre-ı	equisites for this course (if any): None	
5. Co-1	equisites for this course (if any):	
None		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

This course describes the most important ideas, theoretical results, and examples of divisibility, factorizations and congruences. The course includes the essential fundamentals of these topics. The emphasis is on calculations, and some applications are mentioned.

- 2. Course Main Objective
- To expose students to the fascinating subject of number theory.
- To let students, gain basic knowledge in number theory; this is essential for subsequent courses in mathematics and computer science.
- To prepare student for abstract mathematics courses like "Modern Algebra".

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	Recognize the concepts of divisibility, prime number, congruence and number theorems.	K1, K2
1.2	Duplicate Euclid's algorithm, Fermat Theorem, Euler Theorem and Wilson's Theorem.	K1, K2
2	Skills:	
2.1	Solve some Diophantine equations and problems on selected applications of Number theory using Euclid's algorithm, Fermat Theorem, Euler Theorem and Wilson's Theorem.	S1, S2
2.2	Apply rigorously the quadratic reciprocity law in computing and proving some statements in number theory including questions about divisibility and primes.	S4
2.3	Use online solvers related to number theory applications.	S5
2.4	Compute the order of integers and primitive roots modulo primes.	S3
3	Values:	
3.1	Defend the ideas and axioms underpinning the mathematics	V1, V3
3.2	Engage in group discussions and critical interactions.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Divisibility and factorizations : Divisibility properties, the division algorithm, representation of a number relative to arbitrary base, the binary digit system, Fundamental theorem of arithmetic, infinitude of prime numbers, greatest common divisors and least common multiple, Euclidean algorithm and Bezout's identity.	16
2	Congruences : Congruence and modular arithmetic, Diophantine linear equation, Chinese Remainder Theorem and system of linear Diophantine equations. Wilson's Theorem, Little Fermat's Theorem, Euler phi function and Euler Theorem.	
3	Applications : divisibility tests, round-robin tournaments, pseudo primes, pseudorandom numbers, linear codes, Pythagorean triples and sum of two squares.	12
5	Divisibility and factorizations: Divisibility properties, the division algorithm, representation of a number relative to arbitrary base, the binary digit system, Fundamental theorem of arithmetic, infinitude of prime numbers, greatest common divisors and least common multiple, Euclidean algorithm and Bezout's identity.	
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching	Assessment
	Č	Strategies	Methods
1.0	Knowledge and Understanding:		
1.1	Recognize the concepts of divisibility, prime number, congruence and number theorems.	•3 lecture hours\week •2 tutorial	• Regular Exams • Assignments
1.2	Duplicate Euclid's algorithm, Fermat Theorem, Euler Theorem and Wilson's Theorem.	hours\week •Self-study	• Short Quizzes
2.0	Skills:		
2.1	Solve some Diophantine equations and problems on selected applications of Number theory using Euclid's algorithm, Fermat Theorem, Euler Theorem and Wilson's Theorem	Self-study Real-life problems	Participations Short Quizzes
2.2	Apply rigorously the quadratic reciprocity law in computing and proving some statements in number theory including questions about divisibility and primes.	Self-study Real-life problems	Participations Short Quizzes
2.3	Use online solvers related to number theory applications.	Self-study Real-life problems	Participations Short Quizzes
2.4	Compute the order of integers and primitive roots modulo primes.	Self-study Real-life problems	Participations Short Quizzes
3.0	Values		
3.1	Defend the ideas and axioms underpinning the mathematics	Class discussion.	Participation
3.2	Engage in group discussions and critical interactions.	Team work	Group classwork

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

1.Learning Resources		
Required Textbooks	• Elementary Number Theory, 7th Edition, David M. Burton, McGraw Hill, 2011. (Main Reference).	
Essential References Materials	 Elementary Number Theory, 5th edition, K. Rosen, Addison-Wesley, 2004. An Introduction to Mathematical Reasoning: Numbers, Sets and Functions, P. Eccles, Academic Express, 1997. Elementary Theory of Numbers, W. Le Veque, Dover Publications, 1990. 	
Electronic Materials	None	
Other Learning Materials	None	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Ouality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title:	Introduction to Differential Equations
Course Code:	MAT 1231
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strate Methods	gies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Credit hours: 5 (4 Lectures, 0 Lab, 2 Tutorial)		
2. Course type		
a. University College Department	Others	
b. Required Elective	<u> </u>	
3. Level/year at which this course is offered: Level 6 / Year 2		
4.Pre-requisites for this course (if any): MAT 1102, MAT 1223		
5. Co-requisites for this course (if any):		
None		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

This course describes the most important ideas, theoretical results, and examples of first order differential equations, second and higher order linear differential equations, Laplace transform and linear systems of linear differential equations. The course includes the essential fundamentals of these topics. The emphasis is on calculations, and some applications are mentioned. The use of Symbolic MATLAB software to solve differential equations is essential.

2. Course Main Objective

- Classify differential equations by order, linearity, and homogeneity.
- Be familiar with techniques for solving first, second and higher order differential equations.
- Solve systems of linear differential equations solving linear system of differential equations using matrix techniques and eigenvalues and notion of the exponential of matrices.
- Use Laplace transforms to solve differential equations and systems of differential equations.

3. Course Learning Outcomes

J. C00	ise Learning Outcomes	
Upon	CLOs successful completion of this course, students will be able to:	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	Summarize the concept of ordinary differential equations, the meaning of the meaning of their solutions, and the methods to find them.	K1, K2
1.2	Classify differential equations with respect to their order and linearity to match the corresponding methods to solve them.	K1, K2
2	Skills:	
2.1	Solve real-world problems involving Cauchy-Euler equations Bernoulli, Ricatti differential equations and other initial value problems in fields of such as economics, engineering, and the sciences.	S1, S2
2.2	Formulate, clearly and precisely, differential equations to solve various applied problems.,	S4
2.3	Using Symbolic MATLAB software and online CAS to find and visualize solutions of differentia equations.	S5
2.4	Solve first-order and second-order and high-order ordinary differential equations using the appropriates methods including integration, the method of undetermined coefficients, the method of variations of parameters, Laplace transform.	S3
3	Values:	
3.1	Engage in group discussions and critical interactions	V1, V3
3.2	differentiate between valid and fallacious Mathematical arguments to model real problem involving differential equations.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	First order differential equations: Separable equations, First order linear equations, Exact differential equations, Homogeneous differential equations, Bernoulli equations, Riccati equations.	14
2	Second order linear differential equations: General solution of the homogeneous linear equation with constant coefficients, Particular solution of the non-homogeneous equation, Method of Undetermined Coefficients, Variation of Parameters Method.	14
3	Higher order linear differential equations: General theory of linear differential equations, Homogeneous linear equations with constant coefficients, Undetermined Coefficients Method, Variation of Parameters Method.	10
4	Laplace Transforms: Basic definitions and properties, First shifting theorem, Partial fractions, Differentiation and integration of Laplace transforms, Laplace transform of some particular discontinuous functions, the unit step function, Dirac function, shifting on the t- axes and second shifting theorem, Inverse of Laplace transform, Convolution, Solving Initial Value Problems Using Laplace Transforms.	16
5	Linear systems of differential equations: Superposition principle, Independence, Matrix exponential, Basic theory of systems of first order linear equations, Homogeneous linear systems with constant coefficients, non-homogeneous linear systems of differential equations.	12

	Using Symbolic MATLAB software to solve differential equations. Brief introduction to symbolic MATLAB software, solving some generic ODE with examples.	
	72	

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding:		
1.1	Summarize the concept of ordinary differential equations, the meaning of the meaning of their solutions, and the methods to find them.	•4 lecture hours\week •2 tutorial hours\week •Self-study	• Regular Exams • Assignments • Short Quizzes
1.2	Classify differential equations with respect to their order and linearity to match the corresponding methods to solve them.	•4 lecture hours\week •2 tutorial hours\week Self-study	• Regular Exams • Assignments Short Quizzes
2.0	Skills:		
2.1	Solve real-world problems involving Cauchy-Euler equations Bernoulli, Ricatti differential equations and other initial value problems in fields of such as economics, engineering, and the sciences.	Self-study Real-life problems	Participations Short Quizzes
2.2	Formulate, clearly and precisely, differential equations to solve various applied problems.,	Self-study Real-life problems	Participations Short Quizzes
2.3	Using Symbolic MATLAB software and online CAS to find and visualize solutions of differentia equations.	Self-study Real-life problems	Participations Short Quizzes
2.4	Solve first-order and second-order and high-order ordinary differential equations using the appropriates methods including integration, the method of undetermined coefficients, the method of variations of parameters, Laplace transform.	Self-study Real-life problems	Participations Short Quizzes
3.0	Values:		
3.1	Engage in group discussions and critical interactions	Class discussion and team work	Participation and homework report.
3.2	differentiate between valid and fallacious Mathematical arguments to model real problem involving differential equations.	Class discussion	Participation, mini- project and homework.

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%

#	Assessment task*	Week Due	Percentage of Total Assessment Score
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources		
Required Textbooks	• Elementary Differential Equations and Boundary Value Problems, W. Boyce and R. DiPrima, 9th Edition, New York: John Wiley & Sons, 2010. (Main Reference)	
Essential References Materials	 Advanced Engineering Mathematics, E. Kreyszig, John Wiley & Sons, INC 10th Edition, 2010. Fundamentals of Differential Equations, R. Nagle, E. Saff and A. Snider, Addison-Wisley, 6th Edition, 2011. A first course in differential equations with applications, Dennis G. Zill, 5th Edition, PWS Kent Publishing Company, 2000. 	
Electronic Materials	rerials None	
Other Learning Materials	None	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Specification

- (Bachelor)

Course Title: Math Software

Course Code: MAT 1241

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2024 - V1

Last Revision Date: 08/10/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	6
G. Specification Approval	6

A. General information about the course:

1. Course Identification

1. C	1. Credit hours:				
2 (0	2 (0 Lectures, 4 Lab, 0 Tutorial)				
2. C	2. Course type				
A.	□University	☐ College	□ Program	n 🗆 Track	□Others
В.	⊠ Required		[□Elective	
3. Level/year at which this course is offered: Level 3 / Year 2					

4. Course general Description:

This course describes the most important ideas, theoretical results, and examples for an introduction to MATLAB programming. The emphasis is on calculations and programming.

5. Pre-requirements for this course (if any):

None

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

- To provide an introduction and use some of the high-level mathematical programming languages such MATLAB, Maple and Mathematica, as a practical aid in doing mathematics.
- To provide the student with some basic skills in the use of this software without attempting deep coverage.
- 2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	0	0%
3	HybridTraditional classroomE-learning	0	0%
4	Distance learning	0	0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	0
2.	Laboratory/Studio	60
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
	Total	60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods	
1.0	Knowledge and understanding				
1.1	Identify the environment of software "MATLAB".	К2	4 lab hours\week	Direct: Lab Exams	
1.2	Recall a range of syntaxes using MATLAB.	К3	Self-study	AssignmentsShort Quizzes	
2.0	Skills				
2.1	Create code to provide a solution to a range of Mathematical problems ranging from simple to complex.	S1	 Self-study 	Direct:	
2.2	Produce and implement, clearly and precisely, simple programs.	S3	Real-life problems	Participations, Short Quizzes	
2.3	Develop MATLAB code into a given to online solver.	S1			
2.4	Analyze algorithms, M-file script and calculus operation design to solve mathematical problems via MATLAB.	S3	Self-studyReal-life problems	Direct: Participations, Short Quizzes	
3.0	Values, autonomy, and responsib	ility			
3.1	Generate initiatives with independence and in groups.	V1	Personal questions	Direct: Participation	
3.2	Show attitude of support the use of mathematical software in solving real life problems.	V2	Teamwork	Direct: Homework and Mini projects	

C. Course Content

No	List of Topics	Contact Hours
1	Starting with MATLAB: Introduction to the software and computer, MATLAB windows, help and look for commands, arithmetic operations, Display Formats, Built-in functions, Variables assignment, Elementary built-in functions, Command line editing.	7
2	Arrays: Creating arrays (vectors, matrices), Lin space command, some major matrices, operators, Matrix operations in MATLAB, Array addressing, Adding and deleting elements, Strings.	7

3	Other Operators: Operator Precedence, Relational operations, Logical operations, all and any commands, find command, sort command, max and min command.	7
4	2D and 3D graphs: Plot and ezplot command, fplot command, multigraphs plots, others plot commands, axis and graphic handling, layout a figure, 3D line plot, Mesh and Surface plots, view command.	7
5	Script files: Creating and saving a file, disp and fprintf commands, loading a file, search path, defining functions, structure of a function file, inline function, feval command, local and global variables,	8
6	Starting with MATLAB: Introduction to the software, Command window, help and look for commands, arithmetic operations, Display Formats, Builtin functions, Variables assignment, Command line editing.	8
7	Programming: If-else structure, for and while loops, Break and continue commands, Switch-case statement.	8
8	Symbolic toolbox: Symbolic object and expressions, algebraic expression manipulation, factorization, simplification, solving equations.	8
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HomeWorks, Quizzes, Mini projects	During the term	10%
2.	First Midterm	Week 5-6	25%
3.	Second Midterm	Week 10-11	25%
4.	Final Exam	Week 16	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	• <i>Introduction to MATLAB</i> , Delores Etter, Pearson Education Inc, 4th Edition, 2018. ISBN: 978-0-13-461528-8 (Main Reference)
Supportive References	 MATLAB: An Introduction with Applications, 3rd Edition; Amos Gilat, The Ohio State Univ. 2008. MATLAB Primer, 7th Edition, K. Sigmon and T. Davis, Chapman & Hall/CRC, 2005. An Introduction to Matlab, 5th Edition, David F. Griffiths, University of Dundee, United Kingdom, 2012.
Electronic Materials	MATLAB online documentation (http://www.mathworks.com)
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources	
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each classroom should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection. 	
Technology equipment (projector, smart board, software)	 The rooms should be equipped with data show and Smart Board. 	
Other equipment (depending on the nature of the specialty)	None	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Effectiveness of Students' assessment	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
The extent to which CLOs have been achieved	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.
Other	None	

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL	
REFERENCE NO.	8/1446	
DATE	05/04/1446 (08/10/2024)	

Course Title:	Introduction to Operations Research	
Course Code:	MAT 1253	
Program:	Bachelor of Science in Applied Mathematics	
Department:	Mathematics and Statistics	
College:	Science	
Institution:	Imam Mohammad Ibn Saud Islamic University	

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strate Methods	egies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Cred	1. Credit hours: 4 (3 Lectures, 0 Lab, 2 Tutorial)				
2. Cou	rse type				
a.	University College Department	Others			
b.	Required				
3. Level/year at which this course is offered: Level 6 / Year 2					
4.Pre-requisites for this course (if any): MAT 1151					
5. Co-requisites for this course (if any):					
None	± 1				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

This course describes the most important ideas, theoretical results, and examples of an introduction to operations research. The course includes the essential fundamentals of linear and integer programming. The emphasis is on calculations, and some applications are mentioned.

2. Course Main Objective

After finishing this course, the student should be able to formulate a real problem with a linear program (if possible) and to solve it with the appropriate method (Simplex algorithm, special algorithms for transportation or assignment problems, or algorithms for integer programming) by hand (if possible) or by using TORA software.

3. Course Learning Outcomes

5. Cou	rse Learning Outcomes		
Upon	CLOs Upon successful completion of this course, students will be able to		
1	Knowledge and Understanding:		
1.1	Identify a Linear Programming Problem and its formulation.	K1, K2	
1.2	Summarize techniques of operations research including Linear Programming, Assignment Problem. Integer programming, simplex, duality and sensitive analysis.	K1, K2	
2	Skills:		
2.1	Solve proposed real-life problems by applying the methodology and tools of Operations Research including Linear Programming, Assignment Problem. Integer programming, simplex, duality and sensitive analysis.	S1, S2	
2.2	Model in mathematical language understandable operational research problems from the verbal description of the real system.	S4	
2.3	Use of TORA software to solve and online solver to solve some to solve the proposed models	S5	
2.4	Employ clearly, the best strategy Solve linear programming problems using appropriate techniques and optimization solvers.	S3	
3	Values:		
3.1	work individually.	V1, V3	
3.2	Relate well to others and maintain good relationships;	V1, V2	

C. Course Content

No	List of Topics	
1	Introduction to Linear programming: Overview, Linear programming formulations, Graphical Linear Programming Solution, Graphical Sensitivity analysis.	8
2	The Simplex Method: Standard Linear Programming, Determination of Basic Feasible Solutions; The Simplex Algorithm.	8
3	Special Cases of the Simplex: Degeneracy, Alternative optimum, Unbounded solution, Infeasibility.	6
4	Duality and Sensitivity Analysis: Formulation of the Dual Problem, Relationship between Optimal Primal and Optimal Dual Solutions, Economic interpretation of Duality, Dual Simplex and Sensitivity Analysis.	10
5	Special linear programming models: The transportation model, The assignment model.	8
6	6 Introduction to Integer Linear Programming: Illustrative applications, Branch and Bound algorithm, Application to the Traveling Salesman Problem.	
7	Tora Software: Use of TORA software to solve exercises and problems from all course chapters.	10
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding:		
1.1	Identify a Linear Programming Problem and its formulation.	•3 lecture hours\week •2 tutorial hours\week Self-study	Regular ExamsAssignmentsShort Quizzes
1.2	Summarize techniques of operations research including Linear Programming, Assignment Problem. Integer programming, simplex, duality and sensitive analysis.	•3 lecture hours\week •2 tutorial hours\week Self-study	• Regular Exams • Assignments Short Quizzes
2.0	Skills:		
2.1	Solve proposed real-life problems by applying the methodology and tools of Operations Research including Linear Programming, Assignment Problem. Integer programming, simplex, duality and sensitive analysis.	• Self-study • Real-life problems	ParticipationsShort Quizzes
2.2	Model in mathematical language understandable operational research problems from the verbal description of the real system.	• Self-study Real-life problems	Participations Short Quizzes
2.3	Use of TORA software to solve and online solver to solve some to solve the proposed models	• Self-study Real-life problems	Participations Short Quizzes
2.4	Employ clearly, the best strategy Solve linear programming problems using appropriate techniques and optimization solvers.	• Self-study Real-life problems	Participations Short Quizzes
3.0	Values		
3.1	work individually.	Class discussion	Participation
3.2	Relate well to others and maintain good relationships;	Class discussion Team work	Homework and Mini-projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

Tilleur ming recourtees	
Required Textbooks	• <i>Operations Research: An Introduction,</i> H. Taha, Prentice Hall, 8th Edition, 2006. (Main Reference)
Essential References Materials	 Introduction to Operations Research, F. Hillier and G. Lieberman, 7th Edition, McGraw Hill, 2001.
Electronic Materials	None
Other Learning Materials	None

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course

Evaluation Areas/Issues	Evaluators	Evaluation Methods	
		report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.	

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title:	Real Analysis
Course Code:	MAT 1311
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strateg Methods	ies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Cred	1. Credit hours: 5 (4 Lectures, 0 Lab, 2 Tutorial)			
2. Cour				
a.	University College Department	Others		
b.	Required			
3. Leve	l/year at which this course is offered: Level 7 / Year 3			
4.Pre-r	equisites for this course (if any): MAT 1203			
5. Co-r	equisites for this course (if any):			
None				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

This course gives students the theoretical foundations underlying the topics taught in typical Calculus courses. It will cover the fundamentals of mathematical analysis, algebraic and order properties of the real numbers, the least upper bound axiom, limits, continuity, differentiation, the Riemann integral, sequences and series of functions and uniform continuity. An understanding and construction of proofs will be stressed throughout the course.

2. Course Main Objective

- To give a careful and rigorous treatment of the main ideas of differential calculus which was taught to students in Calculus I and Calculus II.
- To let students, gain experience in dealing with axiomatic thinking and concise proofs of calculus.
- To expose students to the rudiments of metric and topological spaces.

3. Course Learning Outcomes

	ise Learning Outcomes		
	CLOs	Aligned-PLOs	
Upon	successful completion of this course, students will be able to:	1111911411200	
1	Knowledge and Understanding:		
1.1	Summarize the fundamental concepts real sequences and real functions of a single variable: continuity, limits, differentiation, integration, and convergence types	K1, K2	
1.2	Describe the real line as a complete, ordered field, and basic differences between the rational and the real numbers, as well as, the difference between pointwise and uniform convergence of a sequence of functions.	K1, K2	
2	Skills:		
2.1	Construct appropriate logical structure of proofs based on Stone-Weierstrass' theorem, Cauchy criterion, the contraction theorem, the Mean Value Theorem and the Fundamental Theorem of Calculus to problems in the context of real analysis.	S1, S2	
2.2	Communicate mathematical ideas in written form.	S4	
2.3	Appraise how to search the internet and using software programs to deal with problem.	S5	
2.4	Compute, in rigorous mathematical way, the real analysis tools, such as the limit of sequences/sum of series/ sequence of functions and Riemann integrals.	S 3	
3	3 Values:		
3.1	Independently, create approaches to unfamiliar mathematical problems.	V1, V3	
3.2	To work in groups.	V1, V2	

C. Course Content

No	List of Topics	Contact Hours
1	Fundamentals: The field of real numbers; The least upper bound property; Completeness property; Archimedean property; Density of Rationales in the set of real numbers, Nested Intervals property.	15
2	Real sequences: Formal definition of the limit; Limit theorems; monotonicity; Boundedness; Subsequences and Bolzano-Weierstass Theorem; Cauchy criterion.	15
3	Limits and Continuity: Formal definition of the limit; right and left limits; continuity; Continuous Functions on Intervals; uniform continuity.	14
4	Differentiation: Derivative of a function; The Mean Value Theorem; main applications to calculus.	8
5	Riemann's Integral: Riemann Sums, Riemann Integral, Properties of Riemann Integral, Case of Monotonic Functions, Case of Continuous Functions, The Fundamental Theorem of Calculus.	10
6	Sequences of functions: Pointwise convergence, uniform convergence, applications on uniform convergence.	10
	Total	72

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

vietnou	15		,
Cod e	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding:		
1.1	Summarize the fundamental concepts real sequences and real functions of a single variable: continuity, limits, differentiation, integration, and convergence types	•4 lecture hours\week •2 tutorial hours\week • Self-study	• Regular Exams • Assignments • Short Quizzes
1.2	Describe the real line as a complete, ordered field, and basic differences between the rational and the real numbers, as well as, the difference between pointwise and uniform convergence of a sequence of functions.	•4 lecture hours\week •2 tutorial hours\week Self-study	• Regular Exams • Assignments Short Quizzes
2.0	Skills:		
2.1	Construct appropriate logical structure of proofs based on Stone-Weierstrass' theorem, Cauchy criterion, the contraction theorem, the Mean Value Theorem and the Fundamental Theorem of Calculus to problems in the context of real analysis.	• Self-study • Real-life problems	ParticipationsShort Quizzes
2.2	Communicate mathematical ideas in written form.	• Self-study Real-life problems	• Participations Short Quizzes
2.3	Appraise how to search the internet and using software programs to deal with problem.	• Self-study Real-life problems	• Participations Short Quizzes
2.4	Compute, in rigorous mathematical way, the limit of sequences/sum of series/ sequence of functions and Riemann integrals.	• Self-study Real-life problems	• Participations Short Quizzes
3.0	Values:		
3.1	Independently, create approaches to unfamiliar mathematical problems.	Class discussion.	Participation
3.2	To work in groups.	Team work	Homework and Mini-projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

Tibeat ming resources	
Required Textbooks	• Introduction to Real Analysis, 4th Edition; R. Bartle, D. Sherbert, Wiley,2011. (Main Reference)
Essential References Materials	 Introduction to Real Analysis, William F. Trench, (Pearson Education) Real and Complex Analysis, W. Rudin, 3rd edition, McGraw-Hills, 1987.
Electronic Materials	None
Other Learning Materials	None

2. Facilities Required

2. I demoies required		
Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection. 	
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.	
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

	1 1
Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title:	Modern Algebra
Course Code:	MAT 1321
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strate Methods	egies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Credit hours:	5 (4 Lectures, 0 Lab, 2 Tutorial)		
2. Course type			
a. University	College Department Others		
b. Requ	ired		
3. Level/year at which this course is offered: Level 8 / Year 3			
4.Pre-requisites for	this course (if any): MAT 1223, MAT 1225		
5. Co-requisites for this course (if any):			
None			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

This course is an introduction to the principles and concepts of modern algebra. Topics will include the theory of groups with their structures. It discusses also the theory of rings and their ideals, emphasizing Euclidean domains.

2. Course Main Objective

- Understand elementary concepts of group theory as Definition of Group, Subgroups, Cyclic Groups, Euler's theorem, Cosets, Lagrange's theorem, Normal Subgroups, quotient Groups.
- Understand Structures of groups.
- Understand Rings, polynomial rings.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	Identify fundamental structures of abstract algebra including groups, rings, fields, and integral domains by definitions and examples and non-examples	K1, K2
1.2	Discuss the fundamental theorem of finite Abelian groups, integral domains and fields, principal ideal domains, and polynomial rings.	K1, K2
2	Skills:	
2.1	Apply fundamental theorems of modern algebra such as Syllow Theorem and isomorphism theorems, and Irreducibility criteria to solve problems in applied settings.	S1, S2
2.2	Write to communicate the topics of modern algebra using rigorous proof writing conventions, explanations, and correct mathematical notation.	S4
2.3	Use information technology to algebraic structures in the context of modern algebra topics through consideration of examples.	S5
2.4	Analyze similarities and differences between algebraic structures including groups, rings, fields, and integral domains.	S3
3	Values:	
3.1	Demonstrate a sense of self-worth	V1, V3
3.2	Relate well to others and maintain good relationships;	V1, V2

C. Course Content

No	No List of Topics	
1	Group Theory: Review, Definition of Group, Subgroups, Cyclic Groups, Euler's theorem, Cosets, Lagrange's theorem, Normal Subgroups, quotient Groups.	20
2	Structures of groups: Isomorphism Theorems, Conjugacy, Group acting on Sets, Finite Abelian Groups, Sylow Theorems, Examples of Simple Groups.	14
3	Rings: Basic definitions and examples, Ring Homomorphisms, Ideals. Quotient Ring, Principal Ideal Domains, Euclidean Domains, Fields.	20
4	Polynomial rings: Definitions and basic property, Polynomial Rings over fields. Irreducibility criteria.	18
	Total	72

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding:			
1.1	Identify fundamental structures of abstract algebra including groups, rings, fields, and integral domains by definitions and examples and non- examples	•4 lecture hours\week •2 tutorial hours\week •Self-study	• Regular Exams • Assignments • Short Quizzes	
1.2	Discuss the fundamental theorem of finite Abelian groups, integral domains and fields, principal ideal domains, and polynomial rings.	•4 lecture hours\week •2 tutorial hours\week Self-study	• Regular Exams • Assignments Short Quizzes	
2.0	Skills:			
2.1	Apply fundamental theorems of modern algebra such as Syllow Theorem and isomorphism theorems, and Irreducibility criteria to solve problems in applied settings.	• Self-study • Real-life problems	ParticipationsShort Quizzes	
2.2	Write to communicate the topics of modern algebra using rigorous proof writing conventions, explanations, and correct mathematical notation.	• Self-study Real-life problems	• Participations Short Quizzes	
2.3	Use information technology to algebraic structures in the context of modern algebra topics through consideration of examples.	• Self-study Real-life problems	• Participations Short Quizzes	
2.4	Analyze similarities and differences between algebraic structures including groups, rings, fields, and integral domains.	• Self-study Real-life problems	• Participations Short Quizzes	
3.0	Values			
3.1	Demonstrate a sense of self-worth	Class discussion	Individual classwork	
3.2	Relate well to others and maintain good relationships;	Class discussion and Team work	Group classwork	

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources			
Required Textbooks	A First Course in Abstract Algebra, J. Farleigh, Pearson Education, 1st Indian edition, 2003. (Main Reference).		
Essential References Materials	Abstract Algebra, D. Dummit, R. Foote, John Wiley, 3 rd Edition, 2004. Contemporary Abstract Algebra, J. Gallian, Houghton Mifflin Company; 5 th Edition, 2001. Abstract Algebra: An Introduction, T. Hungerford, Brooks Cole; 2 nd Edition, 1996.		
Electronic Materials	None		
Other Learning Materials	None		

2. Facilities Required

2. Pacifices Required	
Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title:	Mathematical Methods
Course Code:	MAT 1332
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strate Methods	egies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Credit hours: 5 (4 Lectures, 0 Lab, 2 Tutorial)					
2. Cou	rse type				
a.	University	College Department	Others		
b.	Required	☐ Elective			
3. Level/year at which this course is offered: Level 7 / Year 3					
4.Pre-requisites for this course (if any): MAT 1203, MAT 1231					
5. Co-requisites for this course (if any):					
None	None				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

This course covers a broad spectrum of mathematical techniques essential to the solution of advanced problems. Topics include Series Solutions of ODES, Vector Calculus, Fourier series and Fourier transform. Each topic is given a formal treatment and illustrated by examples of varying degrees of difficulty.

- 2. Course Main Objective
- This course is designed to enable students to know some classical methods used for solving differential equations.
- The course covers series solutions to ODEs as well as the description of Fourier methods together with applications to ODEs solvability.

3. Course Learning Outcomes

	CLOs	
On su	ccessful completion of the course, students will be able to:	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	Identify various techniques, including Power series method, Special functions, and Fourier series/transform, to solve differential equations.	K1, K2
1.2	Distinguish advanced differential and integral calculus theory.	K1, K2
2	Skills:	
2.1	Apply appropriately Fourier transform and their inverse real-life problems involving differential equations in the context of mathematical method	S1, S2
2.2	Communicate mathematics clearly and precisely both orally and in writing.	S4
2.3	Use mathematical software and online solvers to solve differential equation in context of the course.	S5
2.4	Develop competency in mathematical presentation, written and verbal skills.	S3
3	Values:	
3.1	Demonstrate confidence in solving given mathematical problems.	V1, V3
3.2	Operate meaningfully and productively with others.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Series solutions of differential equations: Power series solution of differential equations around ordinary points, Euler-Cauchy equations, Frobenius method for solving second order linear differential equations around regular singular points, Bessel's equations and Bessel's functions, Legendre's Equations. Special functions (Gamma and Beta functions).	18
	Vector Calculus: Vector-Valued Functions of one variable, Del operator: divergence, gradient, curl, and Laplacian, Line and Surface Integrals, conservative fields, Green's Theorem, Divergence Theorem, Stokes' Theorem, Vector operators in curvilinear coordinate systems, Some Physical Applications of Vector Calculus.	24
2	Fourier Transforms: Review of Fourier Series, Convergence of Fourier Series, Fourier Integrals and their convergence, Complex Fourier series and Integrals. Fourier Transform, Inverse Fourier Transform, Time and frequency shifting. Properties and Applications of the Fourier transforms. Fourier Cosine and Sine transforms.	15
3	Fourier transform: The Fourier Integral, Fourier Cosine Integral and Sine Integral, The Complex Fourier Integral, Fourier transforms, Properties and Applications of the Fourier transforms, Fourier Cosine and Sine Transforms, The Discrete Fourier Transform, The Fast Fourier transform.	15
Total		

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding:		
1.1	Identify various techniques, including Power series method, Special functions, and Fourier series/transform, to solve differential equations.	•4 lecture hours\week •2 tutorial hours\week •Self-study	• Regular Exams • Assignments • Short Quizzes
1.2	Distinguish advance differential and integral calculus theory.	•4 lecture hours\week •2 tutorial hours\week Self-study	• Regular Exams • Assignments Short Quizzes
2.0	Skills:		
2.1	Apply appropriately Fourier transform and their inverse real-life problems involving differential equations in the context of mathematical method	• Self-study • Real-life problems	• Participations • Short Quizzes
2.2	Communicate mathematics clearly and precisely both orally and in writing.	• Self-study Real-life problems	• Participations Short Quizzes
2.3	Use mathematical software and online solvers to solve differential equation in context of the course.	• Self-study Real-life problems	• Participations Short Quizzes
2.4	Develop competency in mathematical presentation, written and verbal skills.	•Self-study Real-life problems	• Participations Short Quizzes
3.0	Values:		
3.1	Demonstrate confidence in solving given mathematical problems.	Class discussion	Individual classwork
3.2	Operate meaningfully and productively with others.	Team work	Group classwork

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

Required Textbooks	• Elementary Differential Equations and Boundary Value Problems, W. Boyce and R. Di Prima, 9th edition, New York: John Wiley & Sons, (2010).
Essential References Materials	 Advanced Engineering Mathematics, E. Kreyszig, John Wiley & Sons, INC 10th ed. (2010). Mathematical methods in the physical sciences, Boas, Mary L.: John Wiley & Sons, INC., (2005). Calculus, Robert T. Smith and Roland B. Minton, 4th Edition; McGraw-Hill, 2012.
Electronic Materials	None
Other Learning Materials	None

2. Facilities Required

2. I delitties itequii ed	
Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title: Introduction to Partial Differential Equations

Course Code: MAT 1334

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strate Methods	gies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Cred	lit hours: 5 (4 Lectures, 0 Lab, 2 Tutorial)		
2. Cour	rse type		
a.	University ☐ College ☐ Department ✓	Others	
b.	Required Elective	· · · · · · · · · · · · · · · · · · ·	
3. Level/year at which this course is offered: Level 9 / Year 3			
4.Pre-requisites for this course (if any): MAT 1331			
5. Co-requisites for this course (if any):			
None			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

This course introduces students to the theory of boundary value and initial value problems for partial differential equations (Dirichlet, Neumann, and Mixed BVP). It emphasizes classification, characteristics, linear, elliptic, hyperbolic, and parabolic for first-order equations and second order equations. Topics covered include Laplace's equation, heat equation, wave equation and separation of variables method, Fourier series, Fourier and Laplace transforms for Solving PDEs.

2. Course Main Objective

- To provide the student with the necessary mathematical tools of applied mathematics in order to understand a wide variety of model problems that arises in physics and engineering using partial differential equations with boundary conditions.
- To emphasize techniques and broad understanding rather than proofs.
- To introduce the students to the theory and applications of partial differential equations (PDEs), and to explore various methods of solving PDEs.
- Once successful completion of this course, students should be able to classify PDEs and solve them by using appropriate methods.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	To recognize BVPs and IVPs for classical second-order PDEs describing physical processes such as heat and wave diffusions.	K1, K2
1.2	To solve analytically PDEs via methods of separation of variables, of characteristics, and Fourier and Laplace transforms.	K1, K2
2	Skills:	
2.1	To develop techniques of first and second-order PDEs.	S1, S2
2.2	To present basic PDE's methods clearly and precisely both orally and in writing.	S4
2.3	To use Internet in searching for different kinds of PDEs	S5
2.4	To demonstrate some proofs of PDEs solving methods.	S3
3	Values:	
3.1	To defend the formulated conclusions individually.	V1, V3
3.2	To operate meaningfully and productively with others.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to PDEs: Definition of a PDE; Degree, linearity; homogeneous and inhomogeneous equations; First order partial differential equations; The method of characteristics.	18
2	Second-order equation: Classification as Parabolic, Hyperbolic, and Elliptic equations.	6
3	Classical PDEs of mathematical physics and Boundary-Value Problems: Wave equation, Heat equation, Laplace equation; Boundary Conditions; Definition of a Boundary-Value Problem. Dirichlet, Neumann, and Mixed BVP.	24
4	Analytic methods for solving PDEs: Separation of variables method; Solution of PDEs by Fourier series; Fourier and Laplace transforms; Solving PDEs using Fourier and Laplace transforms.	24
	Total	72

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding:		
1.1	To recognize BVPs and IVPs for classical second-order PDEs describing physical processes such as heat and wave diffusions.	•4 lecture hours\week	• Regular Exams
1.2	To solve analytically PDEs via methods of separation of variables, of characteristics, and Fourier and Laplace transforms.		• Assignments • Short Quizzes
2.0	Skills		
2.1	To develop techniques of first and second-order PDEs.	Real-life problems	Short Quizzes
2.2	To present basic PDE's methods clearly and precisely both orally and in writing.	Self-study	Participations
2.3	To use Internet in searching for different kinds of PDEs	Real-life problems	Short Quizzes
2.4	To demonstrate some proofs of PDEs solving methods.	Self-study	Participations
3.0	Values		
3.1	To defend the formulated conclusions individually.	Personal questions	Participation
3.2	To operate meaningfully and productively with others.	Team work	Homework and Mini-projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

Tibeat ming resources			
Required Textbooks	Introduction to Partial Differential Equations; Undergraduate Texts in Mathematics, P. Olver, Springer, 2013. (Main Reference).		
 Partial Differential Equations of Mathematical Physics Guenther & J.W. Lee, Prentice Hall/Dover public Mineola, 1996. (Main Reference). Partial Differential Equations Methods and Application (2nd Edition), R. McOwen, Prentice Hall/Pearson Educations. Lectures on Partial Differential Equations, V. I. An Springer-Verlag, Berlin, 2004. 			
Electronic Materials None			
Other Learning Materials	None		

2. Facilities Required

2. Pacifics Acquired		
Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection. 	
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.	
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.	

G. Course Ouality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title: Numerical Analysis (1)

Course Code: MAT 1341

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strate Methods	gies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Credi	it hours: 5 (3 Lectures, 2 Lab, 2 Tu	torial)	
2. Cour	rse type		
a.	University College Departme	ent Others	
b.	Required		
3. Level/year at which this course is offered: Level 8 / Year 3			
4.Pre-requisites for this course (if any): MAT 1231, CS 1249			
5. Co-requisites for this course (if any):			
None			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	84	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	24
3	Tutorial	24
4	Others (specify)	0
	Total	84

B. Course Objectives and Learning Outcomes

1. Course Description

This course is an introduction to the numerical analysis. It presents the fundamental concepts and methods, and basic numerical analysis tools in the field. This course emphasizes not only numerical methods, but also the analysis of their convergence and convergence rates. It develops as well the basic understanding of numerical algorithms and skills to implement algorithms to solve mathematical problems on the computer.

2. Course Main Objective

- To provide an introduction of computational techniques for finding approximate solutions to difficult mathematical problems.
- To estimate the error sources and the convergence of the algorithms with respect to the various techniques used.
- To introduce students to the basics of numerical analysis.
- To learn how to use computers to solve mathematical problems using MATLAB in Lab.

3. Course Learning Outcomes

J. Cou	rse Learning Outcomes				
Upon	CLOs successful completion of this course, students will be able to:	Aligned-PLOs			
1	1 Knowledge and Understanding:				
1.1	Recognize theories and concepts used in Numerical Analysis.	K1, K2			
1.2	Identify the concept of finite difference, approximation by iteration, numerical differentiation and integration, error analysis.	K1, K2			
2	Skills:				
2.1	Apply elementary numerical techniques and rules, including Floating Point Representation, interpolation, Trapezoidal and Simpson Rules, Gaussian Quadrature, Newton Divided Difference, Euler method, Runge-Kutta methods, and matrix algebra tools to solve given real-life problems.	S1, S2			
2.2	Write efficient, well-documented Matlab code and present numerical results in an informative way.	S4			
2.3	Implement some numerical methods using Matlab software and CAS.	S5			
2.4	Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.	S 3			
3	Values:				
3.1	work individually and in group	V1, V3			
3.2	formulate a variety of alternative numerical methods to estimate the solutions of ODEs according to their setting.	V1, V2			

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to data representation: Numerical Errors; Floating Point Representation; Round-off; Significant Digit; Error Propagation.	12
2	Root Finding: Bisection Method, Newton's Method, Secant Method, Fixed Point Iterations.	12
3	Interpolation and Approximation: Taylor polynomials, Approximation of order n, Polynomial Error, Linear and Quadratic Interpolation, Lagrange Interpolation, Newton Divided Difference Method, Error Evaluation.	14
4	Numerical Integration and Differentiation: The Trapezoidal and Simpson Rules, Gaussian Quadrature, Numerical Differentiation.	14
5	Numerical Solution of Linear Systems: Gauss Elimination, LU and Cholesky Decompositions, Iterative Methods: Jacobi and Gauss-Siedel Methods, Error Analysis.	18
6	Numerical solution of differential equations: Euler method, Runge-Kutta methods. Error and convergence analysis.	14
	Total	84

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods			
1.0	Knowledge and Understanding:					
1.1	Recognize theories and concepts used in Numerical Analysis.	3 lecture hours\week2 lab hour\week2 tutorial hours\weekSelf-study	• Regular Exams • Assignments • Short Quizzes			
1.2	Identify the concept of finite difference, approximation by iteration, numerical differentiation and integration, error analysis.	3 lecture hours\week2 lab hour\week2 tutorial hours\weekSelf-study	• Regular Exams • Assignments Short Quizzes			
2.0	Identify the concept of finite differen differentiation and integration, error		eration, numerical			
2.1	Skills:	• Self-study • Real-life problems	ParticipationsShort Quizzes			
2.2	Apply elementary numerical techniques and rules, including Floating Point Representation, interpolation, Trapezoidal and Simpson Rules, Gaussian Quadrature, Newton Divided Difference, Euler method, Runge-Kutta methods, and matrix algebra tools to solve given real-life problems.	• Self-study Real-life problems	• Participations Short Quizzes			
2.3	Write efficient, well-documented Matlab code and present numerical results in an informative way.	• Self-study Real-life problems	• Participations Short Quizzes			
2.4	Implement some numerical methods using Matlab software and CAS.	• Self-study Real-life problems	• Participations Short Quizzes			
3.0	Values					
3.1	work individually and in group	Class discussion and team work	Participation			
3.2	formulate a variety of alternative numerical methods to estimate the solutions of ODEs according to their setting.	Class discussion and problem solving.	Homework and Mini-projects			

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning resources			
Required Textbooks	• Elementary Numerical Analysis, 3 rd Edition, Kendall Atkinson; Weimin Han, 2004. (Main Reference)		
Essential References Materials * An Introduction to Numerical methods and Analysis, Jan Epperson, Wiley, 2002.			
Electronic Materials	None		
Other Learning Materials	None		

2. Facilities Required

Zi i dellities ittequii ed	,
Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying

Evaluation Areas/Issues	Evaluators	Evaluation Methods						
		changes necessar		need	to	be	made	if

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title: Combinatorics and Graphs

Course Code: MAT 1353

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strategic Methods	es and Assessment
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Credit hours: 4 (3 Lectures, 0 Lab, 2 Tutor	rial)			
2. Course type	<u></u>			
a. University College Department	✓ Others			
b. Required \checkmark Elective				
3. Level/year at which this course is offered: Level 9 / Year 3				
4.Pre-requisites for this course (if any): MAT 1102, MAT 1223				
5. Co-requisites for this course (if any):				
None				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

This course serves to introduce the basic combinatorial techniques such as counting, recursion and linear recurrence equations with emphasis on pigeonhole principle, binomial coefficients, recursive functions, generating functions and homogeneous and non-homogeneous linear recurrences with constant coefficients. It will introduce also the students to graph theory, with emphasis on simple graphs, Euler and Hamiltonian graphs, trees, networks, paths and cycles, graph colorings, and planar graphs and graphs isomorphism.

2. Course Main Objective

- To introduce student to Combinatorics and Graph theory.
- To learn basics of counting, recursion and recurrence relations.
- To introduce students to graph theory, especially Euler and Hamiltonian graphs, planar graphs, coloring graphs, shortest paths, isomorphism of graphs, spanning trees and network flows.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	To recognize planar graphs, trees, shortest path problems, and Euler, Hamilton circuits.	K1, K2
1.2	To use efficient methods of combinatorics.	K1, K2
2	Skills:	
2.1	To develop techniques of enumeration problems.	S1, S2
2.2	To present basic theorems of graph theory clearly and precisely both orally and in writing.	S4
2.3	To use Internet in searching for Hamiltonian problem algorithms	S5
2.4	To demonstrate some proofs of enumeration and graphs related problems.	S3
3	Values:	
3.1	To employ ethical concepts and rules to determine viable alternatives in any given situation.	V1, V3
3.2	To show findings and discuss the results with others.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Counting: Product rule, Sum rule, Inclusion-Exclusion principle, Tree diagrams; Pigeonhole principle, Binomial coefficients.	9
2	Recursion: Recurrence definitions, Set defined recursively, Recursive functions. Recurrence relations, generating functions, multiplication of generating functions; generalized binomial theorem.	9
3	Linear recurrence equations: Homogeneous and non-homogeneous linear recurrences with constant coefficients.	8
4	Introduction to Graph Theory: Graph terminology, degree of a vertex, simple graphs, paths, cycles, subgraphs, isomorphism of graphs, adjacency matrix, incidence matrix.	7
5	Euler & Hamiltonian graphs: Euler cycle, characterization of Euler graphs. Hamiltonian cycle, properties, Traveling Salesman Problem.	3
6	Planar graphs: Euler's Formula, Kuratowski's theorem. Genus of a graph. Ringel-Youngs theorem.	3
7	Graph colorings: Vertex colorings. Greedy algorithm.	3
8	Shortest path: shortest path problems; Optimality principle, Djkstra's algorithm.	8
9	Isomorphism of graphs: Homomorphisms, embedding, and isomorphism of graphs, invariant properties.	3
10	Trees: Spanning trees, minimum spanning trees, Kruskal's algorithm, Prim's algorithm, Greedy algorithm.	4
11	Networks flow: Definitions, flow augmenting paths, cut sets, maximum flow, Ford-Fulkerson algorithm, Minimum cost capacities flow problem.	3
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding:		
1.1	To recognize planar graphs, trees, shortest path problems, and Euler, Hamilton circuits.	•3 lecture hours\week	• Regular Exams
1.2	To use efficient methods of combinatorics.	2 tutorial hours\weekSelf-study	• Assignments • Short Quizzes
2.0	Skills		
2.1	To develop techniques of enumeration problems.	Real-life problems	Short Quizzes
2.2	To present basic theorems of graph theory clearly and precisely both orally and in writing.	Self-study	Participations
2.3	To use Internet in searching for Hamiltonian problem algorithms	Real-life problems	Short Quizzes
2.4	To demonstrate some proofs of enumeration and graphs related problems.	Self-study	Participations
3.0	Values		
3.1	To employ ethical concepts and rules to determine viable alternatives in any given situation.	Personal questions	Participation
3.2	To show findings and discuss the results with others.	Team work	Homework and Mini-projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

Required Textbooks	Discrete Mathematics and its Applications, K. Rosen, McGraw-Hill, 6th Edition, 2006. (Main Reference)
Essential References Materials	
Electronic Materials	None
Other Learning Materials	None

2. Facilities Required

2. Pacifics required	<u> </u>
Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL	
Reference No.	11/1444	
Date 22/04/1444 (16/11/2022)		

Course Specifications

Course Title:	Financial Mathematics (1)
Course Code:	MAT 1371
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strategi Methods	ies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Credit hours: 4 (3 Lectures, 0 Lab, 2 Tutorial)				
2. Course type				
a.	University	College Department O	thers	
b.	Required	Elective	<u> </u>	
3. Level/year at which this course is offered: Level 8 / Year 3				
4.Pre-requisites for this course (if any): MAT 1102				
5. Co-requisites for this course (if any):				
None				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

This course is designed to introduce students to Financial Mathematics. They will learn about the different types of interest (simple interest, compound interest) and annuities. The topics expose as well the fundamental concepts such as cash flows, present value, and yield that form the basis for further advanced learning. More topics will also be covered.

2. Course Main Objective

On completion of this module, students should be able

- to understand and to perform calculations relating to present value, current value, and accumulated value,
- to calculate present value, current value, and accumulated value for sequences of non-contingent payments,
- to understand key concepts concerning loans and how to perform related calculations,
- to understand key concepts concerning bonds, and how to perform related calculations,
- to understand key concepts concerning yield curves, rates of return, and measures of duration and convexity, and how to perform related calculations.

3. Course Learning Outcomes

	CLOs			
Upon successful completion of this course, students will be able to:		Aligned-PLOs		
1 Knowledge and Understanding:				
1.1	Recognize the interest rate, annuities, problem of interest, accumulation function, future value, current value, present value, discount factor, convertible <i>m</i> -thly, nominal rate, effective rate, inflation and real rate of interest, force of interest, equation of value.	K1, K2		
1.2	Describe the price, book value, amortization of premium, accumulation of discount, redemption value, par value/face value, yield rate, coupon.	K1, K2		
1.3		K1, K2		
2	Skills:			
2.1	Solve real-life financial problems involving compound interest, present and future values, and annuities.	S1, S2		
2.2	Apply logical thinking to problem solving in context to communicate results clearly and precisely both orally and in writing.	S4		
2.3	Use appropriate technology to aid problem solving.	S5		
2.4	Calculate appropriately the value(s) of money. the annual effective rate of interest, the loan amount or outstanding loan balance, the value of a stock.	S 3		
3	Values:			
3.1	work individually and in group.	V1, V3		
3.2	Show the scientific attitude by mentioning and testing a hypothesis before accepting it.	V1, V2		

C. Course Content

No	List of Topics	Contact Hours
1	The measurement of interest: Introduction. The accumulation and amount functions. The effective rate of interest. Simple interest. Compound interest. Present value. The effective rate of discount. Nominal rates of interest and discount. Forces of interest and discount. Varying interest.	10
2	Solution of problems in interest: Introduction. The basic problem. Equations of value. Unknown time. Unknown rate of interest. Determining time periods. Practical examples.	8
3	Basic annuities: Introduction. Annuity-immediate. Annuity-due. Annuity values on any date. Perpetuities. Unknown time. Unknown rate of interest. Varying interest.	8
4	More general annuities: Introduction. Differing payment and interest conversion periods. Annuities payable less frequently than interest is convertible. Annuities payable more frequently than interest is convertible. Continuous annuities. Payments varying in arithmetic progression. Payments varying in geometric progression. More general varying annuities. Continuous varying annuities.	7
5	Amortization schedules and sinking funds : Introduction. Finding the outstanding loan balance. Amortization schedules. Sinking funds. Differing payment periods and interest conversion periods. Varying series of payments.	8

6	Bonds and other securities : Introduction. Types of securities. Price of a bond. Premium and discount. Valuation between coupon payment dates. Determination of yield rates. Callable and puttable bonds. Other securities,	8
7	Yield rates : Introduction. Discounted cash flow analysis. Uniqueness of the yield rate. Reinvestment rates. Interest measurement of a fund. Timeweighted rates of interest. Portfolio methods and investment year methods.	7
8	Practical applications : Introduction. Truth in lending. Automobile financing. Real estate mortgages. Approximate methods. Depreciation methods. Capitalized cost. Modern financial instruments.	4
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Cod		T 1: C/	Assessment
e	Course Learning Outcomes	Teaching Strategies	Methods
1.0	Knowledge and Understanding:		
1.1	Recognize the interest rate, annuities, problem of interest, accumulation function, future value, current value, present value, discount factor, convertible <i>m</i> -thly, nominal rate, effective rate, inflation and real rate of interest, force of interest, equation of value.	•3 lecture hours\week •2 tutorial hours\week Self-study	Regular ExamsAssignmentsShort Quizzes
1.2	Describe the price, book value, amortization of premium, accumulation of discount, redemption value, par value/face value, yield rate, coupon.	•3 lecture hours\week •2 tutorial hours\week Self-study	• Regular Exams • Assignments Short Quizzes
2.0	Skills:		
2.1	Solve real-life financial problems involving compound interest, present and future values, and annuities.	• Self-study • Real-life problems	• Participations • Short Quizzes
2.2	Apply logical thinking to problem solving in context to communicate results clearly and precisely both orally and in writing.	Self-study Real-life problems	Participations Short Quizzes
2.3	Use appropriate technology to aid problem solving.	Self-study Real-life problems	Participations Short Quizzes
2.4	calculate appropriately the value(s) of money. the annual effective rate of interest, the loan amount or outstanding loan balance, the value of a stock.	Self-study Real-life problems	Participations Short Quizzes
3.0	Values:		
3.1	work individually and in group.	Personal questions and team work.	Participation, Homework and Mini-projects

Cod e	Course Learning Outcomes	Teaching Strategies	Assessment Methods
3.2	Show the scientific attitude by mentioning and testing a hypothesis before accepting it.	Class discussion	participation

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources	
Required Textbooks	Theory of Interest, 3rd Edition, Stephen Kellison, McGraw-Hill Education, 2009.
Essential References Materials	Blyth, S. 2013. An Introduction to Quantitative Finance. Translated by M. Aba Oud, Riyadh: IMAMU Press, 2019. Schaum's Outline of Mathematics of Finance, Revised Edition, 2nd Edition, McGraw-Hill Education, 2011. Introduction to mathematical finance, D. Heath and G. Swindle (Eds), American Mathematical Society, 1999.
Electronic Materials	None
Other Learning Materials	None

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.

Item	Resources
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL	
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Specifications

Course Title:	Complex Variable
Course Code:	MAT 1412
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strateg Methods	gies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Cr	dit hours: 5 (4 Lectures, 0 Lab, 2 Tutorial)
2. Co	rse type
a.	University College Department Others
b.	Required
3. Lev	el/year at which this course is offered: Level 10 / Year 3
4.Pre	requisites for this course (if any): MAT 1311
5. Co-	requisites for this course (if any):
None	

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

This course is an introduction to the theory of functions of a complex variable. Topics include complex numbers and their properties, Cauchy-Riemann equations and analytic functions, harmonic functions, Cauchy's theorem, integral representation formulae, power series of analytic functions, zeros, isolated singularities, Laurent series, poles, residues, use of residue calculus to evaluate real integrals, and conformal mapping.

2. Course Main Objective

The main purpose of Complex Analysis is to study the development of functions of one complex variable and perform a thorough investigation of the major theorems of complex analysis – the Cauchy-Riemann Equations, Cauchy's Theorem, Cauchy's Integral Formula, the Maximum Modulus Principle, Liouville's Theorem, the Residue Theorem, Rouche's Theorem, the Riemann Mapping Theorem – including their proofs. Also apply these ideas to a wide range of problems that include the evaluation of both complex line integrals and real integrals.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	To recognize complex functions and their properties: continuity, differentiation, Cauchy-Riemann equations, and analyticity.	K1, K2
1.2	To outline line integrals, complex contour integrals, series, and residues.	K1, K2
2	Skills:	
2.1	To develop techniques of integration by using residues.	S1, S2
2.2	To present Complex integral and its applications clearly and precisely both orally and in writing.	S4
2.3	To use Internet in searching for complex sequences and series	S5
2.4	To demonstrate some proofs of ODE solutions by using complex series.	S3
3	Values:	
3.1	To work individually.	V1, V3
3.2	Develop personal values and attributes such as honesty, empathy and respect for others.	V1, V2

C. Course Content

1	Basics: Euler formula and exponential form of a complex number, Basic topological properties, Functions of complex variable, Elementary functions, Limits, continuity and uniform continuity.	10
2	Continuity and differentiability: Limits, Continuity and uniform continuity, Derivative of a complex function at a point, Cauchy-Riemann equations and differentiability of complex functions, Derivatives of elementary functions, Analytic function at a point, Singular points, Analytic function and harmonic functions, Hopital's rule.	18
3	Complex integral: Line integral and complex integral, Complex form of Green's theorem, Cauchy's and Cauchy-Goursat theorems, Complex indefinite integral, Cauchy's integral formula, Argument, Rouche's, Liouville's, and modulus theorems.	17
4	Complex sequences and series: Basic definitions, tests of series absolute convergence, power series and uniform convergence, circle of convergence, differentiation and integration of power series, Taylor's series and Laurent's series. Type of singular points, Picard's theorem.	17
5	Residues: Residues and the residue theorem with applications.	5
6	Basic concepts of conformal mapping.	5
	Total	72

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Cod e	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding:		
1.1	To recognize complex functions and their properties: continuity, differentiation, Cauchy-Riemann equations, and analyticity.	•4 lecture hours\week	• Regular Exams
1.2	To outline line integrals, complex contour integrals, series, and residues.	•2 tutorial hours\week •Self-study	• Assignments • Short Quizzes
2.0	Skills		
2.1	To develop techniques of integration by using residues.	Real-life problems	Short Quizzes
2.2	To present Complex integral and its applications clearly and precisely both orally and in writing.	Self-study	Participations
2.3	To use Internet in searching for complex sequences and series	Real-life problems	Short Quizzes
2.4	To demonstrate some proofs of ODE solutions by using complex series.	Self-study	Participations
3.0	Values		
3.1	To work individually.	Personal questions	Participation
3.2	Develop personal values and attributes such as honesty, empathy and respect for others.	Team work	Homework and Mini-projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

1.Learning Resources		
Required Textbooks	ks Complex Variables: Introduction and Applications, M. Ablowitz et al, 2 nd Edition, 2003. (Main Reference)	
Essential References Materials	Complex Variables and applications, R.V. Churchill and J.W. Brown, McGraw-Hill 5 th Edition, 1989. Inversion theory and conformal mapping, David E. Blair, Student Mathematical Library 9, American Mathematical Society, 2000.	
Electronic Materials None		
Other Learning Materials	None	

2. Facilities Required

. Tuchites required		
Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection. 	
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.	
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that

Evaluation Areas/Issues	Evaluators	Evaluation Methods
		need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Specifications

Course Title:	Introduction to Topology
Course Code:	MAT 1415
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strateg Methods	gies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Cred	it hours: 5 (4 Lectures, 0 Lab, 2 Tutorial)	
2. Cour	rse type	
a.	University College Department ✓ Others	
b.	Required ✓ Elective	
3. Level/year at which this course is offered: Level 11 / Year 3		
4.Pre-r	equisites for this course (if any): MAT 1311	
5. Co-requisites for this course (if any):		
None		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	72	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	48
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	72

B. Course Objectives and Learning Outcomes

1. Course Description

The course starts with the topology of the real line and the topology of the plane. It then deals with metric spaces and all their properties. In particular continuity and uniform continuity of mappings between metric spaces are discussed in terms of sequences. The course also covers topological spaces, subspaces, and product of spaces together with the main properties. Homeomorphisms are also introduced in the general setting of topological spaces. However, the concepts of compact set and connected set are only introduced for the real line.

2. Course Main Objective

This course introduces the fundamentals of Topology.

It emphasizes techniques of proofs in the setting of topological spaces.

It introduces the students to the concepts of metric and topological spaces. Once successful completion of this course, students should be able to distinguish between them and to know their properties.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	To outline the fundamental concepts of metric and topological spaces.	K1, K2
1.2	To define connected and compact spaces on the real line.	K1, K2
2	Skills:	
2.1	To develop techniques of problem solving in the topology of the line.	S1, S2
2.2	To present basic theorems of topology for the real line clearly and precisely both orally and in writing.	S4
2.3	To use Internet in searching for topological spaces.	S5
2.4	To demonstrate some proofs of theorems related to the topology of the real line.	S3
3	Values:	
3.1	To work individually.	V1, V3
3.2	Develop personal values and attributes such as honesty, empathy and respect for others.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Topology of the line: Open and closed sets, neighborhoods, interior points, limit points. Boundary points; closure of a set, dense sets, isolated points, cluster points. Nested intervals, Cantor's Nested Intervals Theorem, open cover of a set. Compact sets, the Heine-Borel Theorem, Bolzano-Weierstrass Theorem. Connected sets. Topology of the plane: Metrics, balls, open and closed sets in R^2, examples of other metric spaces.	24
2	Metric space: Open and closed sets, neighborhoods, isolated, boundary, adherent and limit points, interior and closure of a set, dense sets, and separable spaces. Distance between a point and a set and between sets, diameter of a set. Sequences and limit of a sequence. Cauchy sequences and complete metric spaces. Continuous functions on metric spaces and their properties. Uniform continuity, isometric and homeomorphic spaces, equivalent metrics.	24
3	Topological space: Open and closed sets, neighborhoods, interior points, adherent and limit points, boundary points; interior and closure of a set, dense sets. Basis, sub-basis, and equivalent bases. Continuous functions on topological spaces and their properties. Metrizable topological spaces, open and closed maps, homeomorphism; topological subspaces, Hausdorff spaces, product of topological spaces.	24
	Total	72

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Cod e	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding:		
1.1	To outline the fundamental concepts of metric and topological spaces.	•4 lecture hours\week	•Regular Exams
1.2	To define connected and compact spaces on the real line.	2 tutorial hours\weekSelf-study	AssignmentsShort Quizzes
2.0	Skills		
2.1	To develop techniques of problem solving in the topology of the line.	Real-life problems	Short Quizzes
2.2	To present basic theorems of topology for the real line clearly and precisely both orally and in writing.	Self-study	Participations
2.3	To use Internet in searching for topological spaces.	Real-life problems	Short Quizzes
2.4	To demonstrate some proofs of theorems related to the topology of the real line.	Self-study	Participations
3.0	Values		
3.1	To work individually.	Personal questions	Participation
3.2	Develop personal values and attributes such as honesty, empathy and respect for others.	Team work	Homework and Mini-projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

1.Dearming resources		
Required Textbooks	Principles of Topology, Fred H. Croom, Thomson Learning Asia 2008.	
Essential References Materials	 Topology: A First Course, Munkres, J.R., Prentice-Hall, Englewood Cliffs, NJ, 1st Edition 1975. Theory and Problems of General Topology, Seymour Lipschutz, Schaum's Outline Series, 1965. 	
Electronic Materials	None	
Other Learning Materials	None	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL	
Reference No.	11/1444	
Date	22/04/1444 (16/11/2022)	

Course Specification

— (Bachelor)

Course Title: Modeling and Simulation

Course Code: MAT 1463

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2022 - V1

Last Revision Date: 15/10/2022

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. C	1. Credit hours:					
4 (3 1	4 (3 Lectures, 1 Lab, 1 Tutorial)					
2. C	2. Course type					
A.	□University	☐ College	⊠ Prog	ram	□Track	□Others
В.	⊠ Required			□Electi	ve	
3. Level/year at which this course is offered: Level 11 / Year 4						
4 0	4 Command Description					

4. Course general Description:

The course introduces students to developing and analyzing mathematical models for real-world systems. It covers continuous systems using differential equations, partial differential equations, and discrete systems through difference equations. Students will also learn simulation techniques using MATLAB/Simulink, focusing on practical applications.

5. Pre-requirements for this course (if any):

MAT 1334 Introduction to Partial Differential Equations

6. Co-requisites for this course (if any):

None.

7. Course Main Objective(s):

The course is crucial in the Applied Mathematics program as it equips students with the skills to translate complex real-world problems into mathematical frameworks. This ability is essential for analyzing and solving issues across diverse fields such as physics, engineering, biology, and economics ...etc. By emphasizing both modeling techniques and simulation tools, the course fosters critical thinking and practical problem-solving skills, preparing students for careers in research, data analysis, and applied sciences. Ultimately, it enhances their capacity to make data-driven decisions and contributes to advancements in technology and innovation.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	0	0%
3	HybridTraditional classroomE-learning	0	0%
4	Distance learning	0	0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	36
2.	Laboratory/Studio	12
3.	Field	0
4.	Tutorial	12
5.	Others (specify)	0
	Total	60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	To formulate real problems in mathematical terms, making appropriate simplifying assumptions with description of advantages and limitation of Simulation approach.	K1, K2	 3 lecture hours\week 1 tutorial hours\week 1 lab hours\week Self-study 	RegularExamsAssignments
1.2	To use MATLAB and SIMULINK in the simulation techniques.	K1, K2		Assignments and lab exam Mini-project
2.0	Skills			
2.1	To develop techniques of problem solving.	S1, S2	Self-studyReal-life problems	Exams
2.2	To communicate mathematics clearly and precisely both orally and in writing.	S4		lab exam Mini-project Report and presentation
2.3	To communicate mathematics clearly and precisely both orally and in writing.	S5		

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
3.0	Values, autonomy, and responsibility			
3.1	To work individually.	V1, V3	Personal questions	Participation
3.2	To work in groups.	V1, V2	Team work	Mini-projects

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to Mathematical Modeling Process: Concept; Objectives; Methods and tools Mathematics is the natural modeling language; Definition of mathematical models.	5
2.	Modeling Continuous Systems: Modeling with Differential Equations: Population dynamic; Electrical Circuits; Mechanical Systems; Biological models (Lotka-Volterra systems, Predator-Prey systems).	10
3.	Modeling with Partial Differential Equations: Linear Temperature Diffusion; One-dimensional Hydrodynamic model. Case Studies: Heat diffusion, Wave vibration, Laplace Equation.	15
4.	Modeling Discrete Systems: Modeling with difference equations; Modeling with data; Discrete Velocity Models; Continuous Vs. Discrete Models	10
5.	Simulation: Block-Diagrams; State-Space Model; Transfer Functions, State-space Vs. transfer function. Stability and pole locations; Introduction to Matlab\Simulink (Starting Simulink, Basic Elements, building a System, Running Simulations); Simulation of some models (case study models) and Analysis of Simulation results.	20
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Mini-project and participation	During the term	10%
2.	Midterm	Week 5-6	25%
3.	Lab Exam	Week 8-9	25%

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
4.	Final Exam	Week 12-13	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Mathematical Modeling and Simulation: Introduction for Scientists and Engineers, Kai Veltn, Wiley 2009. (Main Reference 1) Introduction to Simulink® with Engineering Applications, Steven T. Karris, Orchard Publications, 2006. (Main Reference 2) Introduction to mathematical biology: modeling, analysis, and simulation, C.S. Chou, A. Fridman, Springer, 2016.
Supportive References	Simulation Modeling and Analysis with Expert fit Software, Averill Law, McGraw-Hill Science, 2007. A Concrete Approach to Mathematical Modelling, M. M. Gibbons, Wiley-Interscience, 2007. Topics in Industrial Mathematics; H. Neunzert, A. Siddiqui; Kluwer Academic Publishers, 2000. Mathematical Modeling Physical systems: An Introduction; D. Basmadjian, Oxford University Press, 2003.
Electronic Materials	
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Classrooms: Equipped with whiteboards, projectors, and Smart Boards for interactive lessons and group discussions. Laboratories: Feature computers with internet access, enabling hands-on activities and exploration of algebraic and trigonometric concepts. Exhibition Rooms: Spaces for showcasing projects and presentations to encourage collaborative learning.
Technology equipment (projector, smart board, software)	 Data Show Projectors: For clear presentations in classrooms and labs. Smart Boards: To enhance interactivity during lessons. Mathematical Software: Essential for graphing and analysis.
Other equipment	• Computers: For mini-project and homework and practical applications in laboratories.

Items	Resources
(depending on the nature of the specialty)	 Advanced Calculators: For computations and problem-solving and supporting the study of limits, continuity, and differentiation. Whiteboards and Markers: To facilitate brainstorming and collaboration.

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student and teaching staff	Surveys and Questionnaires
Effectiveness of Students assessment	Course Coordinator	Peer Reviews
Quality of learning resources	Students and teaching staff	Classroom Observations
The extent to which CLOs have been achieved	Student Representatives	Student Performance Evaluations (exams, projects) CLOs Excel sheet.
Other	None	

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
REFERENCE NO.	11/1444
DATE	22/04/1444 (16/11/2022)

Course Specification

— (Bachelor)

Course Title: Advanced Euclidean Geometry

Course Code: MAT 1482

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2022 - V1

Last Revision Date: 15/10/2022

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	8

A. General information about the course:

1. Course Identification

1. C	1. Credit hours:				
4 (3 1	4 (3 Lectures, 0 Lab, 2 Tutorial)				
2. C	2. Course type				
A.	A. □University □ College □ Department □Track □Others				
B. ⊠ Required ⊠ Elective					
2 Level/year at which this course is offered: Level 9 / Year 3 or Level 11 / Year					

3. Level/year at which this course is offered: Level 9 / Year 3 or Level 11 / Year

4. Course general Description:

Advanced Euclidean Geometry is an elective course. This is a senior level class which is a comprehensive study of geometry. It includes the historical development of geometry, abstract and concrete treatments of the subject, examples of various geometries, proving fundamental geometric theorems as of: Ceva, Stewart, Ptolemy and of Miquel.

5. Pre-requirements for this course (if any):

MAT 1223

6. Co-requisites for this course (if any):

None.

7. Course Main Objective(s):

This course will be devoted to the Euclidean and Non-Euclidean geometry, and will begin where the high school geometry course leaves off. It will fill by providing a thorough review of the essentials of the high school geometry course and then expanding those concepts to advanced Euclidean geometry. This course will aim for a high level of competence in the fundamentals, a broad appreciation of the structure of the subject, and a robust ability to solve problems, write proofs and explanations, and explain mathematics verbally and in writing.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	0	0%
3	HybridTraditional classroomE-learning	0	0%
4	Distance learning	0	0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	36
2.	Laboratory/Studio	
3.	Field	0
4.	Tutorial	24
5.	Others (specify)	0
	Total	60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Code of CLOs aligned Teaching Outcomes with program Strategies		Assessment Methods	
1.0	Knowledge and understanding			
1.1	To outline a core set of geometric facts and relationships about triangles, quadrilaterals, circles, congruence, and similarity.	K1, K2	3 lecture hours\week	Regular Exams
1.2	To recognize the basics concepts and results related to Euclidean Geometry.	K1, K2	2 tutorial hours\week	Assignments
1.3	To memorize the principal theorems of this course as: Ceva's theorem, Menelaus's theorem, Ptolemy's theorem, and Stewart's theorem.	K1, K2	Self-study	Short Quizzes
2.0	Skills			
2.1	To develop techniques of Euclidean geometry problems.	S1, S2	Real-life problems	Short Quizzes
2.2	To present main Euclidean geometry theorems clearly	84	Self-study	Participations

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	and precisely both orally and in writing.			
2.3	To use Internet in searching for up-to-date results in Euclidean geometry.	S5	Real-life problems	Short Quizzes
2.4	To demonstrate some proofs in advanced Euclidean geometry.	S3	Self-study	Participations
3.0	Values, autonomy, and responsibility			
3.1	To work individually.	V1, V3	Personal questions	Participation
3.2	To show findings and discuss the results with others.	V1, V2	Team work	Homework and Mini-projects

C. Course Content

No	List of Topics	Contact Hours
1.	Review: basics and stating basic facts concepts and facts of the triangle geometry.	9
2.	Ceva's theorem: Ceva's Theorem and its dual Menelaus's theorem and their applications. Simon's Line, The Butterfly, Theorem Pappus's Theorem.	15
3.	Stewart's theorem and its applications: Equiangular point, Property of Equilateral triangles, and a Minimum Distance Point.	12
4.	Centers of Quadrilaterals: Cyclic Quadrilaterals, and Ptolemy's Theorem and its applications.	9
5.	Miquel's Theorem: Euler distance formula. The nine points circle Theorem and its proof.	6
6.	Axiomatic Systems and Finite Geometries : Glimpse on hyperbolic geometry, elliptic geometry.	9
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HomeWorks, Quizzes, Mini-projects	During the term	10%
2.	First Midterm	Week 4-5	25%
3.	Second Midterm	Week 8-9	25%
4.	Final Exam	Week 12-13	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Advanced Euclidean Geometry, A. Posamentier, Wiley, 2008. Advanced Euclidean Geometry, R. Johnson, Dover, 2007.
Supportive References	 Geometry for College Students, I. Isaacs, Thomson Learning, 2001. Tropical Geometry: An approach to two different types of geometry with tropical geometry, T. von der Hoorn, Lambert Academic Publishing, Berlin, Germany, 2012, ISBN-13: 978-3-8473-1417-2.
Electronic Materials	
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources	
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Classrooms: Equipped with whiteboards, projectors, and Smart Boards for interactive lessons and group discussions. Laboratories: Feature computers with internet access, enabling hands-on activities and exploration of algebraic and trigonometric concepts. Exhibition Rooms: Spaces for showcasing projects and presentations to encourage collaborative learning. 	
Technology equipment (projector, smart board, software)	 Data Show Projectors: For clear presentations in classrooms and labs. Smart Boards: To enhance interactivity during lessons. Mathematical Software: Essential for graphing and analysis. 	
Other equipment (depending on the nature of the specialty)	 Computers: For mini-project and homework and practical applications in laboratories. Advanced Calculators: For computations and problem-solving and supporting the study of limits, continuity, and differentiation. Whiteboards and Markers: To facilitate brainstorming and collaboration. 	

F. Assessment of Course Quality

Assessment Areas/Issue s	Assessor	Assessment Methods
Effectivenes s of teaching	Faculty, Program Manager, Students, Course Coordinator	 Student Course Evaluation: Student feedback surveys to assess teaching quality (clarity, engagement, delivery). Instructor Course Report: Instructor reflection on their teaching effectiveness and challenges. Classroom Observations: Conducted by the program manager or course coordinator to directly observe teaching methods. Benchmarking Between Male and Female Sections: Compare student evaluations and performance across gender-based sections to identify any disparities in teaching effectiveness. Advisory Board Feedback: Gathering insights on teaching methods from external academic or industry professionals.
Effectivenes s of Students assessment	Faculty, External Reviewers, Program Manager, Course Coordinator	 Alignment of Assessments with CLOs: Ensuring exams, assignments, and projects measure the intended CLOs. Benchmarking Between Semesters: Comparing assessment effectiveness across different semesters to maintain consistency and improvement. CLOs Assessment Excel Sheet: Tracking student performance in relation to CLOs to evaluate the strength of assessments. Instructor Course Report: Faculty analysis of assessment outcomes and potential adjustments. External Audit/Reviewers: External examiners review assessments for rigor and fairness.
Quality of learning resources	Program Manager, Librarians, Faculty, Course Coordinator	 Student Course Evaluation: Students provide feedback on the usefulness and availability of learning resources (textbooks, software, etc.). Instructor Course Report: Faculty report on the adequacy and relevance of learning materials. Resource Usage Statistics: Data on the usage of learning resources (digital/physical) such as library access, software downloads. Benchmarking Between Sections/Semesters: Compare resource satisfaction across male/female sections and over semesters. Advisory Board Input: External experts suggest updated or alternative resources to align with industry or academic developments.
The extent to which CLOs have	Faculty, Program Manager, External	- CLOs Assessment Excel Sheet: Regular tracking of student performance for each CLO based on exams, projects, and assignments.

Assessment Areas/Issue s	Assessor	Assessment Methods
been achieved	Reviewers, Course Coordinator	 Instructor Course Report: Faculty reflection on CLO achievement and any gaps identified. Student Course Evaluation: Students assess whether they feel they've met the course learning outcomes. Benchmarking Between Semesters: Analyze CLO achievement across different semesters to ensure continuous improvement. Advisory Board Feedback: Assess whether CLOs are aligned with industry or academic standards and if students are adequately prepared.
Other	None	

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
REFERENCE NO.	11/1444
DATE	22/04/1444 (16/11/2022)

Course Title: Numerical Analysis (2)

Course Code: MAT 1442

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strate Methods	egies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Cre	it hours: 4 (3 Lectures, 1 Lab, 1 Tutorial)				
2. Cou	2. Course type				
a.	University College Department Other	's			
b.	Required Elective				
3. Level/year at which this course is offered: Level 10 / Year 3					
4.Pre-requisites for this course (if any): MAT 1334, MAT 1341					
5. Co-requisites for this course (if any):					
None					

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	12
3	Tutorial	12
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

This course is the continuation of Numerical Analysis I (MAT 341). It introduces numerical methods for approximating functions and data, evaluating integrals and solving ODEs and PDEs. It provides theoretical and practical aspects of best approximation and provides also theoretical analysis of the problems along with algorithms for their solution. Topics include Solving systems of linear equations, Approximating Eigenvalues, Boundary value problems for ordinary differential equations, Numerical solution to partial differential equations.

2. Course Main Objective

- To study basic finite difference methods for partial differential equations.
- To understand the concepts of consistency, stability, and convergence.
- To learn to solve partial differential equations on the computer.
- To introduce finite element method.

The course will involve the use of Matlab or C++ in Lab.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding	
1.1	To outline Least Squares, multistep, predictor-corrector methods, and some Iterative algorithms for eigenvalue problems:	K1, K2
1.2	To solve numerically PDE using finite difference methods.	K1, K2
2	Skills:	
2.1	To develop advanced techniques of numerical solutions.	S1, S2
2.2	To present numerical methods of differential equations clearly and precisely both orally and in writing.	S4
2.3	To use Internet in searching for different numerical methods of ODEs and PDEs	S5
2.4	To demonstrate some proofs of numerical ODEs and PDEs by using finite difference techniques.	S3
3	Values:	
3.1	work individually and in group.	V1, V3
3.2	Show the scientific attitude by mentioning and testing a hypothesis before accepting it.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Advanced Numerical Linear Algebra: Least Squares Method, Matrix Eigenvalue Problems: Power Method, QR Factorization.	15
2	Finite difference techniques: Difference equation replacement, Implicit and explicit finite difference method.	10
3	Boundary Value Problems for ODEs: Multistep Methods, Finite Difference Methods for Systems of Differential Equations.	15
4	Finite Difference Method for PDEs: Finite Difference Method for Boundary Value Problems, Numerical Solution of Elliptic PDEs, Numerical Solution of Parabolic PDEs, Numerical Solution of Hyperbolic PDEs.	20
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

			Assessment
Code	Course Learning Outcomes	Teaching Strategies	Methods
1.0	Knowledge and Understanding		
1.1	To outline Least Squares, multistep, predictor-corrector methods, and some Iterative algorithms for eigenvalue problems:		• Regular Exams
1.2	To solve numerically PDE using finite difference methods.	•1 lab hours\week •Self-study	AssignmentsShort Quizzes
2.0	Skills		
2.1	To develop advanced techniques of numerical solutions.	Real-life problems	Short Quizzes
2.2	To present numerical methods of differential equations clearly and precisely both orally and in writing.	Self-study	Participations
2.3	To use Internet in searching for different numerical methods of ODEs and PDEs	Real-life problems	Short Quizzes
2.4	To demonstrate some proofs of numerical ODEs and PDEs by using finite difference techniques.	Self-study	Participations
3.0	Values		
3.1	work individually and in group.	Personal questions	Participation
3.2	Show the scientific attitude by mentioning and testing a hypothesis before accepting it.	Team work	Homework and Mini-projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

Required Textbooks	Elementary Numerical Analysis, 3 rd Edition, Kendall Atkinson; Weimin Han; 2004. (Main Reference).	
Essential References Materials	 Numerical Solution of Partial Differential Equations: An Introduction, 2nd Edition, K. W. Morton & D. F. Mayers, Cambridge University Press, 2005. An Introduction to Numerical methods and Analysis, James F. Epperson, Wiley; 2002. Numerical Analysis, R. Burden and J. Faires, 8th Edition, Brooks/Cole, 2001. 	
Electronic Materials	None	
Other Learning Materials	None	

2. Facilities Required

2. I delittes Required		
Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection. 	
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title: Introduction to Numerical Optimization

Course Code: MAT 1444

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strate Methods	gies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Credit hours: 4 (3 Lectures, 0 Lab, 2 Tutorial)					
2. Cou	2. Course type				
a.	University College Department Others				
b.	Required Elective				
3. Level/year at which this course is offered: Level 10 or 11 / Year 3					
4.Pre-requisites for this course (if any): MAT 1251, MAT 1341					
5. Co-requisites for this course (if any):					
None	None				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

- To provide students a good understanding on constrained and unconstrained optimization whose content is described in detail in this syllabus.
- To perform some algorithms and codes in order to deepen programming and numerical analysis tools used in this course. MATLAB software will be handled.
- To allow students understanding of the above concepts through study cases and occasional computer-based homework problems.

2. Course Main Objective

- Maximizing or minimizing a certain quantity, that is, an objective function that models a system and satisfies a required set of specifications, called constraints, is a frequent problem in science, engineering, business and economics. The function allows comparison of the different choices for determining which might be "best". For instance, by finding an alternative with the most cost effective or highest achievable performance under the given constraints, by maximizing desired factors and minimizing undesired ones.
- Numerical Optimization turns out to be considerably important for solving such problems. This course aims at training students for acquiring a basic mathematical understanding of modern approaches to numerical optimization and discussing practical aspects of implementation for solving optimization problems. The students learn how to find analytical solutions to some optimization problems.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	To outline the principles of optimization.	K1, K2
1.2	To memorize various types of algorithms for solving optimization problems.	K1, K2
2	Skills:	
2.1	To develop techniques of advanced optimization methods.	S1, S2
2.2	To present various numerical algorithms of optimization clearly and precisely both orally and in writing.	S4
2.3	To use Internet in searching for new improvements of usual numerical algorithms of optimization.	S5
2.4	To compute orders and complexities of usual numerical optimization algorithms and their variants.	S3
3	Values:	
3.1	Engage in group discussions and critical interactions	V1, V3
3.2	differentiate between valid and fallacious Mathematical arguments to model real problem involving differential equations.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Introduction: Examples of optimization problem occurring in science, engineering and economics.	6
2	Univariate optimization: Local and global minima, Necessary and sufficient conditions of the first and second order, Iterative numerical methods for univariate optimization: Exhaustive grid search, Golden section search, Brent's method, Newton's method, Secant method.	14
3	Unconstrained multivariate optimization: Necessary and sufficient conditions of the first and second order, The case of convex functions, Numerical algorithms for nonlinear multivariate optimization: Linear and superliner convergence, Steepest descent algorithm, Quasi-Newton's methods, Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, Conjugate gradient Methods.	15
4	Constrained multivariate optimization: Examples, Equality constraints. Lawrentians and optimality conditions. Geometric interpretation, Equality and inequality constraints, The case of convex programs, Algorithms for constrained optimization: Primal methods: feasible directions methods, active set methods, gradient projection; Penalty and barrier methods.	15
5	Introduction to evolutionary Algorithms: Principles, Selection, Recombination, Mutation and Reinsertion, Examples and applications.	10
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods		
1.0	Knowledge and Understanding:				
1.1	To outline the principles of optimization.	•3 lecture hours\week	•Regular Exams		
1.2	To memorize various types of algorithms for solving optimization problems.	•2 tutorial hours\week •Self-study	• Assignments • Short Quizzes		
2.0	Skills				
2.1	To develop techniques of advanced optimization methods.	Real-life problems	Short Quizzes		
2.2	To present various numerical algorithms of optimization clearly and precisely both orally and in writing.	Self-study	Participations		
2.3	To use Internet in searching for new improvements of usual numerical algorithms of optimization.	Real-life problems	Short Quizzes		
2.4	To compute orders and complexities of usual numerical optimization algorithms and their variants.	Self-study	Participations		
3.0	Values				
3.1	Engage in group discussions and critical interactions	Personal questions	Participation		
3.2	differentiate between valid and fallacious Mathematical arguments to model real problem involving differential equations.	Team work	Homework and Mini-projects		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

Required Textbooks	Numerical Optimization, Jorge Nocedal, Stephen J. Wright, edition 2, Springer 2006 (Main Reference).
Essential References Materials	-An introduction to algorithms for non-linear optimization; N. Gould, S. Leyffer; Springer, 2003Numerical Optimization with Applications; 1st Edition, S. Chandra, Jayadeva, Aparna Mehra; Alpha Science Intl. Ltd., 2009Genetic algorithms on search, optimization and machine learning; D. Goldberg; Addison-Wesley Professional, 1989.
Electronic Materials	None
Other Learning Materials	None

2. Facilities Required

2. Tuemeres required	
Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title: Introduction to Cryptography and Coding

Course Code: MAT 1461

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strate Methods	gies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Credi	t hours: 4 (3	3 Lectures, 0 Lab, 2 Tutorial)	
2. Cours	se type		
a.	University	College Department	Others
b.	Required	Elective	
3. Level/year at which this course is offered: Level 10 / Year 3			
4.Pre-requisites for this course (if any): MAT 1321			
5. Co-requisites for this course (if any):			
None			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

The course is devoted to the fields of cryptography and coding theory. It gives an introduction, with proofs, to the algebra and number theory used in coding and cryptography. Basic problems of cryptography and coding are discussed. Topics include classical ciphers, public key cryptosystems (RSA, Diffie-Hellman key exchange, ElGamal), digital signatures, codes, linear codes, perfect codes and cyclic codes.

2. Course Main Objective

- To introduce student to Cryptography and Coding theory.
- To learn basics of cryptography, public-key systems and digital signatures.
- To introduce students to coding theory, especially cyclic codes.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	To outline the principles of cryptology and of cryptanalysis of historical ciphers.	K1, K2
1.2	To recognize the theory and practice of coding and modern cryptographic systems.	K1, K2
2	Skills:	
2.1	To develop basic techniques of coding.	S1, S2
2.2	To present main algorithms in public key cryptography clearly and precisely both orally and in writing.	S4
2.3	To use Internet in searching for up-to-date algorithms in cryptography.	S5
2.4	To demonstrate the validity of some cryptography algorithms.	S3
3	Values:	
3.1	To engage in group discussions and critical interactions	V1, V3
3.2	To differentiate between valid and fallacious Mathematical arguments to model real problem involving differential equations.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Classical Cryptography: Introduction, shift ciphers and substitution ciphers, Affine cipher, Vigenere cipher, Permutation cipher, Hill cipher, stream cipher, Introduction to cryptanalysis, cryptanalysis of classical systems.	17
2	Public-key cryptosystems: RSA, Number Theory facts, Discrete logarithm, ElGamal cryptosystem, Massey-Omura cryptosystem, Diffie-Hellman key agreement.	12
3	Digital signatures : RSA signature, El-Gamal signature, Digital signature algorithm.	10
4	Introduction to Coding Theory: Introduction to codes, Hamming distance, error detection, error correction, information rate. Linear codes, Generator matrix and parity-check matrix, Perfect codes.	12
5	Cyclic codes: Cyclic codes, generator polynomials.	9
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods		
1.0	Knowledge and Understanding:				
1.1	To outline the principles of cryptology and of cryptanalysis of historical ciphers.	•3 lecture hours\week	• Regular Exams		
1.2	To recognize the theory and practice of coding and modern cryptographic systems.	•2 tutorial hours\week •Self-study	• Assignments • Short Quizzes		
2.0	Skills				
2.1	To develop basic techniques of coding.	Real-life problems	Short Quizzes		
2.2	To present main algorithms in public key cryptography clearly and precisely both orally and in writing.	Self-study	Participations		
2.3	To use Internet in searching for upto-date algorithms in cryptography.	Real-life problems	Short Quizzes		
2.4	To demonstrate the validity of some cryptography algorithms.	Self-study	Participations		
3.0	Values				
3.1	To engage in group discussions and critical interactions	Personal questions	Participation		
3.2	To differentiate between valid and fallacious Mathematical arguments to model real problem involving differential equations.	Team work	Homework and Mini-projects		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

1.Learning Resources			
Required Textbooks • Cryptography: Theory and practice, Douglas R. Stinson Edition, 2006, Chapman and Hall/CRC. (Main Reference • Coding Theory: A First course, San Ling, Chaoping Cambridge University Press, 2004.			
Essential References Materials	 Introduction to Modern Cryptography, J. Katz, Y. Lindell, Chapman and Hall/CRC, 1st Edition, 2007. Making, Breaking Codes: An Introduction to Cryptology, Paul Garrett, 2001, Prentice-Hall. A First Course in Coding Theory, R. Hill, Oxford University Press, 1997. 		
Electronic Materials	None		
Other Learning Materials	None		

2. Facilities Required

2. Pacifics Required	
Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and

Evaluation Areas/Issues	Evaluators	Evaluation Methods
		identifying changes that need to be made if
		necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title: Discrete Simulation

Course Code: MAT 1465

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strateg Methods	gies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Cred	lit hours: 4 (3	Lectures, 0 Lab	o, 2 Tutorial)		
2. Cour	se type				
a.	University	College	Department [Others	
b.	Required	Elective			
3. Leve	3. Level/year at which this course is offered: Level 10 or 11 / Year 3				
4.Pre-requisites for this course (if any): STA 1202					
5. Co-requisites for this course (if any):					
None					

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

This elective course makes students familiar with the most important elements of the Monte Carlo method applied to the statistical and Queuing models of discrete event in order to simulate and visualize the solutions. The course puts the theoretical basis of the random number's generators and its application in discrete simulation.

2. Course Main Objective

This course provides an introduction to system modeling using both computer simulation and mathematical techniques. Emphasis will be on discrete-event simulation model development methodologies and implementation techniques.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	To outline the basic Discrete Event Simulation Concept and language.	K1, K2
1.2	To memorize the Monte Carlo method and its importance in finance as well as other areas.	K1, K2
2	Skills:	
2.1	To develop basic techniques of discrete simulation.	S1, S2
2.2	To present Monte Carlo method clearly and precisely both orally and in writing.	S4
2.3	To use Internet in searching for Markov chains	S5
2.4	To demonstrate the efficiency of Queuing models.	S3
3	Values:	
3.1	To listen to the teacher's explanation of Mathematics reasoning and illustration.	V1, V3
3.2	To show attitude of support the use of computers in learning/teaching mathematics.	V1, V2

C. Course Content

No	List of Topics		
1	Review of some probability and Statistics concepts: Random variables, probability distribution, Estimation examples.	6	
2	Introduction to Simulation: Random numbers, sequences of connected events, etc.	9	
3	Discrete Event Simulation Concept.	6	
4	Monte Carlo simulation.	9	
5	Statistical Models in Simulation	9	
6	Analysis of Queuing Models.	6	
7	Analysis of Simulation Data.	9	
8	Markov chains Monte Carlo method.	6	
	Total	60	

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods		
1.0	Knowledge and Understanding:				
1.1	To outline the basic Discrete Event Simulation Concept and language.	•3 lecture hours\week	• Regular Exams		
1.2	To memorize the Monte Carlo method and its importance in finance as well as other areas.	•2 tutorial hours\week •Self-study	• Assignments • Short Quizzes		
2.0	Skills				
2.1	To develop basic techniques of discrete simulation.	Real-life problems	Short Quizzes		
2.2	To present Monte Carlo method clearly and precisely both orally and in writing.	Self-study	Participations		
2.3	To use Internet in searching for Markov chains	Real-life problems	Short Quizzes		
2.4	To demonstrate the efficiency of Queuing models.	Self-study	Participations		
3.0	Values				
3.1	To listen to the teacher's explanation of Mathematics reasoning and illustration.	Personal questions	Participation		
3.2	To show attitude of support the use of computers in learning/teaching mathematics.	Team work	Homework and Mini-projects		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

Required Textbooks	Simulation Modeling and Analysis with Expert fit Software, Averill Law, Averill M. Law & Associates, McGraw-Hill Science, 2007. (Main Reference).		
Essential References Materials	 Discrete-Event Simulation: A First Course, Lawrence M. Leemis, Stephen K. Park0, Prentice Hall, 2005. Simulation Model Design and Execution: Building Digital Worlds, Paul A. Fishwick, Prentice Hall, 1995. Monte Carlo Methods, J.M. Hammersley and D.C. Handscomb, Publisher: Chapman and Hall, 1983. 		
Electronic Materials	None		
Other Learning Materials	None		

2. Facilities Required

2. Facilities Required		
Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with whiteboard and a projector. Laboratories should be equipped wi computers and an internet connection. 	
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Specifications

Course Title:	Financial Mathematics (2)
Course Code:	MAT 1472
Program:	Bachelor of Science in Applied Mathematics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strategy Methods	ies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Credit hours: 4 (3 Lectures, 0 Lab, 2 Tutorial)					
2. Cou	2. Course type				
a.	University C	ollege	Departn	nent	Others
b.	Required	Elective			
3. Level/year at which this course is offered: Level 10 or 11 / Year 3					
4.Pre-requisites for this course (if any): MAT 1371					
5. Co-requisites for this course (if any):					
None					

6. Mode of Instruction (mark all that apply)

of whole of first decion (mark an that approx				
No	Mode of Instruction	Contact Hours	Percentage	
1	Traditional classroom	60	100%	
2	Blended			
3	E-learning			
4	Distance learning			
5	Other			

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

This course describes the most important ideas, theoretical results, and examples of simple market model, risk-free assets, risky assets, discrete time market models, portfolio management, forward and future contracts, and option pricing. The course includes the essential fundamentals of these topics. The emphasis is on calculations, and some applications are mentioned.

2. Course Main Objective

By the end of this course students must be able to:

- Understand different financial models in discrete time;
- Do pricing and hedging options;
- Manage optimal portfolios.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	To understand the fundamentals of the theory of one-period and multi-period financial models.	K1, K2
1.2	To understand techniques and features of Market Models with both continuous time and discrete time.	K1, K2
2	Skills:	
2.1	To develop techniques of problem solving.	S1, S2
2.2	To communicate mathematics clearly and precisely both orally and in writing.	S4
2.3	To use Internet in searching for scientific information	S5
2.4	To carry out calculations orally and mentally.	S3
3	Values:	
3.1	To work individually.	V1, V3
3.2	To work in groups.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to a Simple Market Model: Basic Notions and Assumptions, No-Arbitrage Principle, One-Step Binomial Model, Risk and Return, Forward Contracts, Call and Put Options, Managing Risk with Options.	8
2	Risk-Free Assets: Time Value of Money, Simple Interest, Periodic Compounding, Streams of Payments, Continuous Compounding, How to Compare Compounding Methods, Money Market, Zero-Coupon Bonds, Coupon Bonds, Money Market Account.	8
3	Risky Assets: Dynamics of Stock Prices, Return, Expected Return, Binomial Tree Model, Risk-Neutral Probability, Martingale Property, Other Models, Trinomial Tree Model, Continuous-Time Limit.	12
4	Discrete Time Market Models: Stock and Money Market Models, Investment Strategies, The Principle of No Arbitrage, Application to the Binomial Tree Model, Fundamental Theorem of Asset Pricing, Extended Models.	8
	Portfolio Management: Risk, Two Securities, Risk and Expected Return on a Portfolio, Several Securities, Risk and Expected Return on a Portfolio, Efficient Frontier, Capital Asset Pricing Model, Capital Market Line, Beta Factor, Security Market Line.	8
	Forward and Futures Contracts: Forward Contracts, Forward Price, Value of a Forward Contract, Futures, Pricing, Hedging with Futures.	8
	Option Pricing: European Options in the Binomial Tree Model, One Step, Two Steps, General N-Step Model, Cox–Ross–Rubinstein Formula, American Options in the Binomial Tree Model, Black–Scholes Formula.	8
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Cod e	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding:			
1.1	To understand the fundamentals of the theory of one-period and multi- period financial models.	•3 lecture hours\week	• Regular Exams	
1.2	To understand techniques and features of Market Models with both continuous time and discrete time.	•2 tutorial hours\week •Self-study	• Assignments • Short Quizzes	
2.0	Skills			
2.1	To develop techniques of problem solving.	Self-study	Participations	
2.2	To communicate mathematics clearly and precisely both orally and in writing.	Real-life problems	Short Quizzes	
2.3	To use Internet in searching for scientific information	Self-study	Participations	
2.4	To carry out calculations orally and mentally.	Real-life problems	Short Quizzes	
3.0	Values			
3.1	To work individually.	Personal questions	Participation	
3.2	To work in groups.	Team work	Homework and Mini-projects	

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Mathematics for Finance: An Introduction to Financial engineering, 2 nd Edition. M. Capinski and T. Zastawniak,
	Springer Verlag, 2011. (Main Reference). ISBN: 1852333308

	1. Blyth, S. 2013. An Introduction to Quantitative Finance. Translated by M. Aba Oud, Riyadh: IMAMU Press, 2019.		
Essential References Materials	 Stochastic Finance: An Introduction in Discrete Time, DeGruyter Studies in Mathematics, 2nd Edition, H. Föllmer and A. Schied, Walter de Gruyter, Berlin, 2011. ISBN: 3110171198. Introduction to Mathematical Finance: Discrete Time Models, 		
Electronic Materials	Stanley R. Pliska, Wiley, 1997.ISBN: 978-1-55786-945-6. None		
Other Learning Materials	None		

2. Facilities Required

2. 1 activités recount cu			
Item	Resources		
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with whiteboard and a projector. Laboratories should be equipped wit computers and an internet connection. 		
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.		
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.		

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title: Actuarial Mathematics

Course Code: MAT 1474

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strate Methods	gies and Assessment 4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Cre	edit hours: 4 (3]	Lectures, 0 Lab,	, 2 Tutorial)	
2. Cou	ırse type			_
a.	University Co	ollege	Department 🗸	Others
b.	Required	Elective	✓	
3. Level/year at which this course is offered: Level 10 or 11 / Year 3				
4.Pre-requisites for this course (if any): MAT 1371				
5. Co-requisites for this course (if any):				
None				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

This course treats the economics of insurance, the future lifetime random variables (discrete and continuous), force of mortality, Life Tables: Select, Ultimate and Select and Ultimate, Annuities and Assurance in both discrete and continuous case, Commutation Functions. The emphasis is on calculations and some applications are mentioned.

2. Course Main Objective

By the end of this course students must be able to:

- Link interest rate with Loan and Mortgage refinancing,
- Understand mortality tables and interpret the force of mortality,
- Compute the net premium for types of Insurance and Life annuities.

3. Course Learning Outcomes

	Aligned-PLOs	
1	Knowledge and Understanding:	
1.1	To outline the fundamentals of the interest rate related to Loan and Mortgage refinancing.	K1, K2
1.2	To memorize mortality tables and the interpretation of its force.	K1, K2
2	Skills:	
2.1	To develop techniques of life insurance.	S1, S2
2.2	To present methods of premium calculations clearly and precisely both orally and in writing.	S4
2.3	To use Internet in searching for real insurance products	S5
2.4	To demonstrate the efficiency of some insurance techniques.	S3
3	Values:	
3.1	To work individually.	V1, V3
3.2	To work in groups.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	Basics of Probability & Interest: Probability, Theory of Interest, Variable Interest Rates, Continuous-time Payment Streams.	5
2	Interest & Force of Mortality: More on Theory of Interest, Annuities & Actuarial Notation, Loan Amortization & Mortgage Refinancing, Illustration on Mortgage Refinancing, Coupon & Zero-coupon Bonds, Force of Mortality & Analytical Models, Comparison of Forces of Mortality.	12
3	Probability & Life Tables: Interpreting Force of Mortality, Interpolation between Integer Ages, Binomial Variables & Law of Large Numbers, Exact Probabilities, Bounds & Approximations, Simulation of Life Table Data, Expectation for Discrete Random Variables, Rules for Manipulating Expectations, Some Special Integrals.	16
4	Expected Present Values of Payments: Expected Payment Values, Types of Insurance & Life Annuity Contracts, Formal Relations among Net Single Premiums, Formulas for Net Single Premiums, Expected Present Values for $m=1$, Continuous Contracts & Residual Life, Numerical Calculations of Life Expectancies.	15
5	Premium Calculation: <i>m</i> -Payment Net Single Premiums, Dependence Between Integer & Fractional Ages at Death, Net Single Premium Formulas Case (i), Net Single Premium Formulas Case (ii), Approximate Formulas via Case(i), Net Level Premiums, Benefits Involving Fractional Premiums.	12
Total		

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods		
1.0	Knowledge and Understanding:				
1.1	To outline the fundamentals of the interest rate related to Loan and Mortgage refinancing.	•3 lecture hours\week	• Regular Exams		
1.2	To memorize mortality tables and the interpretation of its force.	•2 tutorial hours\week •Self-study	• Assignments • Short Quizzes		
2.0	Skills				
2.1	To develop techniques of life insurance.	Real-life problems	Short Quizzes		
2.2	To present methods of premium calculations clearly and precisely both orally and in writing.	Self-study	Participations		
2.3	To use Internet in searching for real insurance products	Real-life problems	Short Quizzes		
2.4	To demonstrate the efficiency of some insurance techniques.	Self-study	Participations		
3.0	Values				
3.1	To work individually.	Personal questions	Participation		
3.2	To work in groups.	Team work	Homework and Mini-projects		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1.Learning Resources

1.Learning Resources				
Required Textbooks	Actuarial Mathematics and Life-Table Statistics, Eric V. Slud, CRC Press (Verlag), 2001. (Main Reference). ISBN: 9781439861974.			
Essential References	 Fundamentals of Actuarial Mathematics, S. David Promislow, Wiley, 2010. ISBN: 978-0-470-68411-5. Actuarial Mathematics, by Newton L. Bowers, Hans U. Gerber, James C. Hickman, Donald A. Jones and Cecil J. Nesbitt (1997). 			
Materials	 ISBN 10: 0938959468, ISBN 13: 9780938959465. 3. Actuarial Mathematics for Life Contingent Risks, 2nd Edition, David C. M. Dickson, Mary R. Hardy and Howard R. Waters, Cambridge University Press, 2013. ISBN: 9781107044074. 			
Electronic Materials	None			
Other Learning Materials	None			

2. Facilities Required

A Pacifics Required		
Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection. 	
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.	
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	None.	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title:	Mathematical Statistics	
Course Code:	STA 1203	
Program:	Bachelor of Science in Applied Statistics	
Department:	nent: Mathematics and Statistics	
College:	Science	
Institution: Imam Mohammad Ibn Saud Islamic University		

Table of Contents

A. Course Identification	
1. Credit hours:	178
2. Course type	178
3. Level/year at which this course is offered:	178
4. Pre-requisites for this course (if any):	178
5. Co-requisites for this course (if any):	178
6. Mode of Instruction (mark all that apply)	178
7. Contact Hours (based on academic semester)	178
B. Course Objectives and Learning Outcomes178	
1. Course Description	178
2. Course Main Objective	179
3. Course Learning Outcomes	179
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	180
2. Assessment Tasks for Students	181
E. Student Academic Counseling and Support181	
F. Learning Resources and Facilities	
1. Learning Resources	182
2. Facilities Required	182
G. Course Quality Evaluation	
H. Specification Approval Data183	

A. Course Identification

1. Credit hours:	4 (3 Lectures, 0 Lab, 2 Tutorial)
2. Course type a. University	✓ Others
3. Level/year at which this course is offered	d: Level 6 / Year 2
4. Pre-requisites for this course (if any):	STA 1202
5. Co-requisites for this course (if any):	None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

This course describes the most important ideas, theoretical results, and examples of bivariate probability distributions, sampling distributions and the CLT, functions of random variables, parameter estimations and hypothesis testing. The course includes the essential fundamentals of these topics. The emphasis is on calculations, and some applications are mentioned.

2. Course Main Objective

- Use joint probability mass functions and joint probability density functions to calculate probabilities;
- Calculate means and variances for linear combinations of random variables.
- Determine the distribution of a general function of a random variable;
- Calculate moment generating functions and use the functions to determine moments and distributions;
- Understand the central limit theorem;
- Know how to compute and explain the precision with which a parameter is estimated;
- Construct confidence intervals on the mean, variance, standard deviation and population proportion.
- To teach students techniques of estimations.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding:	
1.1	To define the moment generating function, the joint probability mass functions, and joint probability density functions.	K1, K2
1.2	To reproduce the confidence intervals on the mean, variance, standard deviation and on a population proportion.	K1, K2
2	Skills:	
2.1	To explain the importance of central limit theorem	S1, S2
2.2	To calculate means and variances for linear combinations of random variables.	S4
2.3	To construct confidence intervals on the appropriate case.	S2, S3
2.4	To explain important properties of point estimators, including bias, variance, and mean square error	S5
2.5	To construct point estimators using the method of moments and the method of maximum likelihood.	S 3
3	Values:	
3.1	To defend the formulated conclusions individually.	V1, V2
3.2	To operate meaningfully and productively with others.	V1, V3

C. Course Content

No	List of Topics	Contact Hours
1	Bivariate Probability Distribution: Two Discrete Random Variables, Two Continuous Random Variables, Covariance and Correlation, Bivariate Normal Distribution, Linear Combinations of Random Variables.	
2	Sampling distributions and the central limit theorem: Sampling distributions, Sampling Distributions of the Means, The chi-square distribution, The t distribution, The F distribution.	6
3	Functions of Random Variables: Finding the probability distribution of a function of random variable. The method of distribution function, The method of transformations, Using the Moment-Generating Functions	8
Sampling Distributions and The Central Limit Theorem: Sampling Distributions related to the Normal Distribution; The Central Limit Theorem; A proof of the Central Limit Theorem.		8
5	Estimation: Point estimation: The Bias and Mean Square Error of Point Estimation; Some Common Point Estimators; Evaluating The goodness of a Point Estimator.	8
6	Confidence Interval Estimation: Confidence interval for the Mean when σ is Known: Confidence interval for the Mean when σ is Unknown. Confidence Interval and Sample Sizes for Proportions. Confidence Intervals for Variance And standard Deviations.	15
7	Properties of Point Estimators and Methods of Estimation: Relative Efficiency. Consistency. Sufficiency. Rao-Blackwell Theorem and Minimum Variance Estimation. The Method of Moments. The Method of Maximum Likelihood.	9
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	To define the moment generating function, the joint probability mass functions, and joint probability density functions.	solving, Classroom	Regular Exams, Lab Assignments, Short Quizzes
1.2	To reproduce the confidence intervals on the mean, variance, standard deviation and on a population proportion.	· ·	Regular Exams, Lab Assignments, Short Quizzes
2.0	Skills		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.1	Explain the importance of central limit theorem	Use of statistical software, Lecturing, Interactive learning.	Lab Exam, Participations, Short Quizzes
2.2	Calculate means and variances for linear combinations of random variables and calculate probabilities for linear combinations of normally distributed random variables	Use of statistical software, Lecturing, Interactive learning.	Lab Exam, Participations, Short Quizzes
2.3	Construct confidence intervals on the appropriate case.	Use of statistical software, Lecturing, Interactive learning.	Lab Exam, Participations, Short Quizzes
2.4	To explain important properties of point estimators, including bias, variance, and mean square error	Use of statistical software, Lecturing, Interactive learning.	Lab Exam, Participations, Short Quizzes
2.5	To construct point estimators using the method of moments and the method of maximum likelihood.	Use of statistical software, Lecturing, Interactive learning.	Lab Exam, Participations, Short Quizzes
3.0	Values		
3.1	To defend the formulated conclusions individually.	Interactive learning, Group interaction, Problem solving.	Lab Exam, Practical exam
3.2	To operate meaningfully and productively with others.	Group interaction, Problem solving.	Assignments and Miniprojects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homeworks, Quizzes, Mini-projects	During the semester	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities 1. Learning Resources

Required Textbooks	 Probability & Statistics for Engineers & Scientists, 9th Edition, R. Walpole, R. Myers, S. Myers, K. Ye, Pearson Education International, 2012. ISBN 9780321629111. (Main Reference). Introduction to Mathematical Statistics, 6th Edition, Robert V. Hogg, Joseph McKean, Allen T. Craig, Prentice Hall, 2005. (Main Reference).
Essential References Materials	 Mathematical Statistics with Applications, 7th Edition, D. Wackerly, W. Mendenhall, R.L. Scheaffer, Brooks/Cole-Cengage Learning, 2008. ISBN-13: 9780495385080. Probability and Statistics in Engineering, 4th Edition, William W. Hines, Douglas C. Montgomery, David M. Goldsman, Connie M. Borror, John Wiley & Sons Inc, 2003. ISBN: 9780471240877. Introduction to Mathematical Statistics, 6th Edition, Robert V. Hogg, Joseph McKean, Allen T. Craig, Prentice Hall, 2005.
Electronic Materials	None
Other Learning Materials	None

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection (Equipped with Microsoft Excel and SPSS).
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board. All computers should be equipped with the following software: Microsoft Excel IBM SPSS R-Project MATLAB
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	See the attached file

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title:	Introduction to Regression
Course Code:	STA 1321
Program:	Bachelor of Science in Applied Statistics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification186	
1. Credit hours:	186
2. Course type	186
3. Level/year at which this course is offered:	186
4. Pre-requisites for this course (if any):	186
5. Co-requisites for this course (if any):	186
6. Mode of Instruction (mark all that apply)	186
7. Contact Hours (based on academic semester)	186
B. Course Objectives and Learning Outcomes186	
1. Course Description	186
2. Course Main Objective	187
3. Course Learning Outcomes	187
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	188
2. Assessment Tasks for Students	190
E. Student Academic Counseling and Support190	
F. Learning Resources and Facilities190	
1. Learning Resources	190
2. Facilities Required	191
G. Course Quality Evaluation191	
H. Specification Approval Data191	

A. Course Identification

1. Credit hours:	4 (3 Lectures,	0 Lab, 2 Tutorial)		
2. Course typea. Universityb. Required	College Department Elective	✓ Others		
3. Level/year at wh	3. Level/year at which this course is offered: Level 7 / Year 3			
4. Pre-requisites for this course (if any): STA 1203				
5. Co-requisites for	this course (if any):	None		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	0
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

In statistics, linear regression is a fundamental technique to approach linearly of statistical modelling, in which we aim to model a response variable using one or more explanatory variables. This course covers the broad class of linear regression models, which are widely used in practice by using basic example data set. The course aims to teach how to formulate such models and fit them to data, how to make predictions with associated measures of uncertainty, and how to select appropriate explanatory variables. Both theory and practical aspects are covered, including the use of computer software for regression.

2. Course Main Objective

Regression analysis consists of a collection of techniques used to explore and understand the relationship between variables and is perhaps the most widely-used and most useful of all the techniques in modern Statistics. The objectives of this course are:

- to help student to have a firm understanding of the underlying theory;
- to learn the tools needed to carry out the statistical regression analysis in a variety of applications;
- to provide student with facility and experience in regression model building, evaluation, and analysis using a modern computer approach.

3. Course Learning Outcomes

A ft or	CLOs	Aligned PLOs
1	Knowledge and Understanding	rlus
1.1	To outline the concept of linear regression model and properties of model parameters for prediction purposes.	K1, K2
1.2	To define regression analysis and its limitations.	K1, K2
2	Skills:	
2.1	To summarize and explain the general procedures of statistical inference for linear regression models.	S1, S2
2.2	To differentiate the situation where linear regression is appropriate	S2
2.3	To interpret estimates and diagnostic statistics.	S3, S4
2.4	To construct and fit linear regression models with the appropriate software.	S 5
2.5	To design and implement advanced methods in regression analysis for applications.	S2, S3
3	Values:	
3.1	To employ ethical concepts and rules to determine viable alternatives in any given situation.	V1, V2
3.2	To show findings and discuss the results with others.	V1, V3

C. Course Content

No	List of Topics	
1	Introduction to Regression Analysis: Regression Models. Formal uses of regression analysis. The data base.	
2	The Simple Linear Regression Model: The model description; Assumption and interpretation of model parameters; Last square formulation; Partitioning total variability; Test of hypothesis on a slope and intercept; Quality of fitted model; Confidence interval on mean response and prediction intervals; A look at a residual.	13

No	No List of Topics	
3	The Multiple Linear Regression Model: Model description and assumptions; Estimation; Properties of the least square estimators; Various hypotheses tests; Multicollinearity in multiple data; Quality of fit and prediction.	16
4	Selection of Variables: Contribution of a variable in the model; Forward selection and backward elimination; Stepwise procedure; All possible subsets and other techniques of selection variables.	
5 Statistical diagnostics: Analysis of residual; Diagnostic plots; Detection of outliers; Influence diagnostics.		12
Total		

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	To outline the concept of linear regression model and properties of model parameters for prediction purposes.	 Using lectures to introduce the subjects of the course's materials. Using examples to demonstrate the introduced methodologies. Discussion within lectures/tutorials/lab sessions. Letting students to raise questions regarding the homework and lectures every week. 	 Continuous Assessment (assignments, test, and miniproject). Final Examination
1.2	To define regression analysis and its limitations.	Discussion within lectures/tutorials Letting students to raise questions regarding the homework and lectures every week.	Continuous Assessment (assignments, test, and miniproject), Final Examination
2.0	Skills		
2.1	To summarize and explain the general procedures of statistical inference for linear regression models.	 Lectures to introduce the subjects of the course's materials. Using examples to demonstrate the introduced methodologies. 	• Continuous Assessment (assignments, test, and mini-project). Final Exam

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
		 Discussion within lectures/tutorials/lab sessions. Letting students to raise questions regarding the homework and lectures every week. 	
2.2	To differentiate the situation where linear regression is appropriate	Using programming assignments, to allow students to apply the methodologies learnt in the lecture and to solidify their understanding of the statistical procedures.	 Continuous Assessment (assignments, test, and mini-project). Final Exam
2.3	To interpret estimates and diagnostic statistics	Using programming assignments, to allow students to apply the methodologies learnt in the lecture and to solidify their understanding of the statistical procedures.	 Lab exams and reports and mini- project). Homeworks Final exam.
2.4	To construct and fit linear regression models with the appropriate software.	Using programming assignments, to allow students to apply the methodologies learnt in the lecture and to solidify their understanding of the statistical procedures.	Lab exams and reports, Continuous Assessment (assignments, test, and miniproject). , Final exam.
2.5	To carry out calculations orally and mentally.	Open discussion at classroom. Letting students to raise questions regarding the homework and lectures every week.	Written assignment and written final exam. Presentation of mini-projects.
3.0	Values		
3.1	To employ ethical concepts and rules to determine viable alternatives in any given situation.	Open discussion at classroom.	Participation, Lab assignments, Mini-project(s)
3.2	To show findings and discuss the results with others.	Small team tasks, Open discussion at classroom.	Lab assignments, Mini-project(s)

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homeworks, Quizzes, Mini-projects	During the semester	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1. Learning Resources

Required Textbooks	Classical and Modern Regression with Applications; 2 nd Edition, Raymond H. Myers, Duxbury Classic, 2000. ISBN-13: 978-0534380168. (Main Reference)		
Essential References Materials	 Regression analysis by example, 5th Edition, Samprit Chatterjee and Alis S. Hadi, Wiley Series in Probability and Statistics, 2012. Applied Regression, 4th Edition, Sanford Weisberg, Wiley Series in Probability and Statistics, 2013. Applied Regression Analysis and Multivariable Methods, 5th Edition, D. G. Kleinbaum, L. L. Kupper, A. Nizam, and E. S. Rosenberg, Cengage Learning, 2013. Introduction to Linear Regression Analysis, 5th Edition; Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining, Wiley Series in Probability and Statistics, 2012. 		
Electronic Materials	Regression Analysis, Theory, Methods and Applications, A Sen and M. Srivastava, Springer-Verlag, 1990. (it can be download from IMAMU domain)		
Other Learning Materials	 Online Linear Regression Calculator linear regression (UC Business Analytics R Programming Guide) 		

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each of the class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board. All computers should be equipped with the following software: Microsoft Excel IBM SPSS R-Project MATLAB
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	See the attached file

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

Course Title:	Introduction to Stochastic Processes
Course Code:	STA 1351
Program:	Bachelor of Science in Applied Statistics
Department:	Mathematics and Statistics
College:	Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification194	ŀ
1. Credit hours:	194
2. Course type	194
3. Level/year at which this course is offered:	194
4. Pre-requisites for this course (if any):	194
5. Co-requisites for this course (if any):	194
6. Mode of Instruction (mark all that apply)	194
7. Contact Hours	194
B. Course Objectives and Learning Outcomes194	ļ
1. Course Description	194
2. Course Main Objective	195
3. Course Learning Outcomes	195
C. Course Content195	;
D. Teaching and Assessment196	Ó
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	196
2. Assessment Tasks for Students	197
E. Student Academic Counseling and Support197	7
F. Learning Resources and Facilities198	}
1. Learning Resources	198
2. Facilities Required	198
G. Course Quality Evaluation199)
H. Specification Approval Data199)

A. Course Identification

1. Credit hours:	4 (3 Lectures, 0 Lab, 2 Tutorial)
2. Course type a. University ☐ College ☐ Department ☐ b. Required ✓ Elective ☐	✓ Others
3. Level/year at which this course is offered:	Level 9 / Year 3
4. Pre-requisites for this course (if any):	STA 1202, MAT 1223
5. Co-requisites for this course (if any):	None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	36
2	Laboratory/Studio	00
3	Tutorial	24
4	Others (specify)	0
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

Markov chains are used to model many phenomena which arise in some statistical problems. The course covers an introduction to probability theory, conditional probability, and conditional expectation. Moreover, discrete time Markov chains are introduced, as well as branching processes, time reversible Markov chains, and hidden Markov chains. Then exponential distributions and the Poisson processes are defined. Finally, Continuous time Markov chains are introduced as well as their transition probability function.

2. Course Main Objective

The course introduces students to the basic theory of probability, enable students to assimilate properties of stochastic processes. learn how to build Markov chain in discrete and continuous time and learn how to use Markov chain in modelling.

3. Course Learning Outcomes

	CLOs	Aligned-PLOs
1	Knowledge and Understanding	
1.1	To describe the basics of stochastic modeling of real-world systems related to the physical sciences, computer science, and (possibly) finance.	K1, K2
1.2	To define exponential distribution to model arrival times, the Poisson process, and outline its application to continuous time Markov chains	K1, K2
1.3	To state the concept of conditional probability, Markov chain, Branching process, Poisson process, and Birth and Death process.	K1, K2
2	Skills:	
2.1	To use probability and matrix theory to solve stochastic models.	S1, S2
2.2	To evaluate stochastic process problems mathematically and using software.	S1, S2, S5
2.3	To assess how sensitive stochastic models are to changes that might occur in model variables.	S2, S3, S4
2.4	To interpret and explain the solution for a stochastic process application.	S3, S4
3	Values:	
3.1	To work individually.	V1, V2
3.2	To show findings and discuss the results with others.	V1, V3

C. Course Content

No	List of Topics		
1	Basic probability: Random variable, Limit Theorems, Stochastic Processes.	7	
2	Conditional Probability and Conditional Expectation: Introduction, The Discrete Case, The Continuous Case, Computing Expectations by Conditioning, Computing Probabilities by Conditioning, Some Applications, An Identity for Compound Random Variables.		

No	List of Topics	
3	Markov Chains: Introduction, Chapman–Kolmogorov Equations, Classification of States, Limiting Probabilities, Some Applications, Mean Time Spent in Transient States, Branching Processes, Time Reversible Markov Chains, Markov Chain Monte Carlo Methods, Markov Decision Processes, Hidden Markov Chains.	13
4	The Exponential Distribution and the Poisson Process: Introduction, The Exponential Distribution, The Poisson Process, Generalizations of the Poisson Process.	
5	Continuous-Time Markov Chains: Introduction, Continuous-Time Markov Chains, Birth and Death Processes, The Transition Probability Function $P_{ij}(t)$, Limiting Probabilities.	9
6	Renewal Theory and Its Applications: Introduction. Distribution of $N(t)$. Limit Theorems and Their Applications. Renewal Reward Processes. Regenerative Processes. Semi-Markov Processes. The Inspection Paradox. Computing the Renewal Function. Applications to Patterns. The Insurance Ruin Problem.	9
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

V	lethods				
	Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
	1.0	Knowledge and Understanding			
	1.1	To describe the basics of stochastic modeling of real-world systems related to the physical sciences, computer science, and (possibly) finance.	 Using lectures to introduce the subjects of the course's materials. Using examples to demonstrate the introduced methodologies. Discussion within lectures/tutorials/lab sessions. 	Continuous Assessment (assignments, test, and mini- project), Final Examination	
	1.2	To define exponential distribution to model arrival times, the Poisson process, and outline its application to continuous time Markov chains	Discussion within lectures/tutorials Letting students to raise questions regarding the homework and lectures every week.	Continuous Assessment (assignments, test, and mini- project), Final Examination	
	1.3	To state the concept of conditional probability, Markov chain, Branching process,	Letting students to raise questions regarding the	Continuous Assessment (assignments, test, and mini-	

		1	
Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	Poisson process, and Birth and Death process.	homework and lectures every week.	project), Final Examination
2.0	Skills		
2.1	To use probability and matrix theory to solve stochastic models.	Self-studyLecture.Real-life problems	• Participations • Short Quizzes
2.2	To evaluate stochastic process problems mathematically and using software.	Using assignments, to allow students to apply the methodologies learnt in the lecture and to solidify their understanding of the statistical procedures.	 Continuous Assessment (assignments, test, and mini- project). Final Exam
2.3	To assess how sensitive stochastic models are to changes that might occur in model variables.	Using assignments, to allow students to apply the methodologies learnt in the lecture and to solidify their understanding of the statistical procedures.	 Lab exams and reports and mini- project). Homework's Final exam.
2.4	To interpret and explain the solution for a stochastic process application.	• Self-study • Lecture. • Real-life problems	• Participations Short Quizzes
3.0	Values		
3.1	To work individually.	Personal questions	ParticipationClassAssignments
3.2	To show findings and discuss the results with others.	Team work	Homework and Mini-projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homeworks, Quizzes, Mini-projects	During the term	20%
2	First Midterm	Week 4-5	20%
3	Second Midterm	Week 7-8	20%
4	Final Exam	Week 13	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1. Learning Resources

Required Textbooks	 <i>Introduction to Probability Models,</i> S. Ross, 11th Edition, Academic Press, 2014. ISBN: 9780123756862 (Main Reference). <i>Introduction to Stochastic Processes With R,</i> Robert P. Dobrow, John Wiley & Sons, Inc, 2016. (Main Reference) 	
Essential References Materials	 An Introduction to Stochastic Modeling, M. A. Pinsky and S. Karlin, 4th Edition, Academic Press Elsevier, 2011. Introduction to Probability, D. Bertsekas and J. Tsitsiklis, 2nd Edition; Athena Scientific, 2008. Fundamentals of Probability with Stochastic Processes, 3rd Edition; Saeed Ghahramani, Prentice Hall, 2004. 	
Electronic Materials	None	
Other Learning Materials	None	

2. Facilities Required

. racinites required		
Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection. 	
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board. All computers should be equipped with the following software: Microsoft Excel IBM SPSS R-Project MATLAB	

Item	Resources
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the semester and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each semester the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	22/04/1444 (16/11/2022)

اسم المقرر:	مبادىء الاقتصاد
رمز المقرر:	قصد 100
البرنامج:	البكالوريوس – المستوى الرابع-
القسم العلمي:	قسم الاقتصاد
الكلية:	كلية الاقتصاد والعلوم الإدارية
المؤسسة:	جامعة الإمام محمد بن سعود الإسلامية

	المحتويات
أ. التعريف بالمقرر الدراسي:	202
ب- هدف المقرر ومخرجاته التعليمية:	202
202	1. الوصف العام للمقرر:
	2. الهدف الرئيس للمقرر
202	
ج. موضوعات المقرر	203
. التدريس والتقييم:	
ريس وطرق التقييم	 ربط مخرجات التعلم للمقرر مع كل من استراتيجيات التد
206	2. أنشطة تقييم الطلبة
	206
و ـ مصادر التعلم والمرافق:	206
206	1. قائمة مصادر التعلم:
207	2. المرافق والتجهيزات المطلوبة:
ز. تقويم جودة المقرر:	207
ح اعتماد الته صيف	208

أ. التعريف بالمقرر الدراسي:	
	1. الساعات المعتمدة: ثلاثة ساعات
أخرى	 2. نوع المقرر أ. متطلب جامعة متطلب كلية ✓ متطلب قسم
_	ب. إجباري ✓ اختياري
	3. السنة / المستوى الذي يقدم فيه المقرر: السنة الثانية/المستوى الرابع
	 4. المتطلبات السابقة لهذا المقرر (إن وجدت) لا يوجد
	5. المتطلبات المتزامنة مع هذا المقرر (إن وجدت)

6. نمط الدراسة (اختر كل ما ينطيق)

		(Ο.		.		•	. •	٧.
ساء	اسة	ط الدراء	نه				م	
30			تليدية	رات التذ	عاض	الم	1	
				المدمج	ايم ا	التعا	2	
			ي	الإلكترون	ايم ا	التعا	3	
				عن بعد	یم ،	التعا	4	
					ی	أخر	5	

لا يوجد

7. ساعات الاتصال (على مستوى الفصل الدراسي)

	· · · · · · · · · · · · · · · · · · ·	
ساعات التعلم	النشاط	۴
30 ساعة	محاضرات	1
	معمل أو إستوديو	2
	دروس إضافية	3
	أخرى (تذكر)	4
30 ساعة	الإجمالي	

ب- هدف المقرر ومخرجاته التعليمية:

1. الوصف العام للمقرر:

يتضمّن هذا المقرر المفاهيم الأساسية لعلم الاقتصاد سواء من منظور جزئي (سلوك المستهاك وسلوك المنتج) أو منظور كلي (الدخل القومي, البطالة, التضخم...) بالاضافة الى دراسة مواضيع تهم القطاع المصرفي وآلية عمل المؤسسات المالية وأيضا التجارة الخارجية.

2. الهدف الرئيس للمقرر

يهدف هذا المقرر التعريف بمفاهيم واسس علم الاقتصاد وسلوك المنتج والمستهلك وآليات الاقتصاد الإسلامي في معالجة القضايا الاقتصادية المرتبطة بالسوق والتوزيع وحسن تخصيص الموارد النادرة بالإضافة إلى دراسة القطاع المصرفي وآلية عمل المؤسسات المالية وأيضا التجارة الخارجية.

3. مخرجات التعلم للمقرر:

	رمز مخرج التعلم المرتبط للبرنامج	مخرجات التعلم للمقرر	
I		المعرفة والفهم	1
ſ		 يعرف الطالب المصطلحات والمفاهيم الأساسية الخاصة بعلم الاقتصاد. 	
ı	ع1	 يعرف الطالب المشكلة الإقتصادية من منظور إسلامي. 	1.1
Į		 يعدد الخصائص والضوابط الإسلامية للمستهلك والمنتج والسوق 	

رمز مخرج التعلم المرتبط للبرنامج	مخرجات التعلم للمقرر		
	يعرف النظم والمؤسسات التي تحكم أداء الاقتصاد الاسلامي	•	
ع2	يعرف الطالب موضوعات الاقتصاد الجزئي والكلي بمنظور اسلامي	•	1.2
	يستعرض فاعلية أليات الاقتصاد الاسلامي في حسن تخصيص الموارد الاقتصادية	•	
ع3	النادرة مقارنة بالنظم الأخرى		1.3
٥	يستعرض الطالب القضايا والنوازل الاقتصادية المعاصرة في الاسلام	•	1.5
	يعدد آليات عمل المؤسسات المالية و التجارة الخارجية	•	
1		المهارات	2
	يطبق المعارف والضوابط في حل المشكلات الاقتصادية المطروحة	•	
	يستنبط الطالب المبادئ الاقتصادية من النصوص الشرعية	•	
م1	يعرض الطالب عقيدته الاسلامية باسلوب عقلاني عصري وبتقهم جيد للتحديات	•	2.1
	الاقتصادية المعاصرة		
ļ 	يقارن بين اليات الاقتصاد الإسلامي والنظم الاقتصاد الأخرى في مختلف المجالات.	•	
	يتعرف الطالب على الأساليب الرياضية والإحصائية المناسبة لحل مسألة معينة،	•	
م2	وتطبيقها، وتفسير النتائج.		2.2
2-7	يتعرف الطالب على كيفية تعظيم المنفعة لمستهاك.	•	2.2
	يتعرف الطالب على كيفية تعظيم الأرباح للمنتج.		
م3	يتواصل بفاعلية شفهيًا وكتابيًا مع الاخرين	•	2.3
	يحلل الطالب القضايا الاقتصادية العصرية	•	
1		القيم	3
	يتحمل مسؤولياته ويطور من قدراته الذاتية		
	پیشن مسوولیت ویشور مل شارات اسالی	_	
	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي	•	
ق1	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح	:	3.1
ق1	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم		3.1
ق1	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والبحوث العلمية المطلوبة منهم		3.1
ق1	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والبحوث العلمية المطلوبة منهم يتعامل مع الاخرين بروح الفريق ويعبر عن رايه باستقلالية وفي ظل الاحترام المتبادل	•	3.1
ق1	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والبحوث العلمية المطلوبة منهم يتعامل مع الاخرين بروح الفريق ويعبر عن رايه باستقلالية وفي ظل الاحترام المتبادل يحضر الطالب المحاضرات بروح ايجابية من أدب الاصغاء وروح المشاركة الفاعلة.	•	3.1
	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والبحوث العلمية المطلوبة منهم يتعامل مع الاخرين بروح الفريق ويعبر عن رايه باستقلالية وفي ظل الاحترام المتبادل يحضر الطالب المحاضرات بروح ايجابية من أدب الاصغاء وروح المشاركة الفاعلة. يتعاون الطلاب مع زملائه في المجموعات بروح الفريق لإنجاز المهام التي توكل عليهم	•	
ق1 	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والبحوث العلمية المطلوبة منهم يتعامل مع الاخرين بروح الفريق ويعبر عن رايه باستقلالية وفي ظل الاحترام المتبادل يحضر الطالب المحاضرات بروح ايجابية من أدب الاصغاء وروح المشاركة الفاعلة. يتعاون الطلاب مع زملائه في المجموعات بروح الفريق لإنجاز المهام التي توكل عليهم وممارسة الدور القيادي عند الحاجة	:	3.1
	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والبحوث العلمية المطلوبة منهم يتعامل مع الاخرين بروح الفريق ويعبر عن رايه باستقلالية وفي ظل الاحترام المتبادل يحضر الطالب المحاضرات بروح ايجابية من أدب الاصغاء وروح المشاركة الفاعلة. يتعاون الطلاب مع زملائه في المجموعات بروح الفريق لإنجاز المهام التي توكل عليهم وممارسة الدور القيادي عند الحاجة وممارسة الدور القيادي عند الحاجة يتصرّب في المسؤولية الشخصية تجاه الغير		
	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والبحوث العلمية المطلوبة منهم يتعامل مع الاخرين بروح الفريق ويعبر عن رايه باستقلالية وفي ظل الاحترام المتبادل يحضر الطالب المحاضرات بروح ايجابية من أدب الاصغاء وروح المشاركة الفاعلة. يتعاون الطلاب مع زملائه في المجموعات بروح الفريق لإنجاز المهام التي توكل عليهم وممارسة الدور القيادي عند الحاجة وممارسة الدور القيادي عند الحاجة يتصرّر ف الطالب بروح عالية من المسؤولية الشخصية تجاه الغير يجيب الطالب على اسئلة المناقشة المتولدة عن كل فصل من فصول المقرر تحت اشراف يجيب الطالب على اسئلة المناقشة المتولدة عن كل فصل من فصول المقرر تحت اشراف	:	
	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والبحوث العلمية المطلوبة منهم يتعامل مع الاخرين بروح الفريق ويعبر عن رايه باستقلالية وفي ظل الاحترام المتبادل يحضر الطالب المحاضرات بروح ايجابية من أدب الاصغاء وروح المشاركة الفاعلة. يتعاون الطلاب مع زملائه في المجموعات بروح الفريق لإنجاز المهام التي توكل عليهم وممارسة الدور القيادي عند الحاجة يتصرّر ف الطالب بروح عالية من المسؤولية الشخصية تجاه الغير يجيب الطالب على اسئلة المناقشة المتولدة عن كل فصل من فصول المقرر تحت اشراف يجيب الطالب على اسئلة المناقشة المتولدة عن كل فصل من فصول المقرر تحت اشراف الاستاذ.		
	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والبحوث العلمية المطلوبة منهم يتعامل مع الاخرين بروح الفريق ويعبر عن رايه باستقلالية وفي ظل الاحترام المتبادل يحضر الطالب المحاضرات بروح ايجابية من أدب الاصغاء وروح المشاركة الفاعلة. يتعاون الطلاب مع زملائه في المجموعات بروح الفريق لإنجاز المهام التي توكل عليهم وممارسة الدور القيادي عند الحاجة يتصر في الطالب بروح عالية من المسؤولية الشخصية تجاه الغير يجيب الطالب على اسئلة المناقشة المتولدة عن كل فصل من فصول المقرر تحت اشراف يجيب الطالب في اعداد واجباته بالدقة والشفافية والامانة		
ق2	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والبحوث العلمية المطلوبة منهم يتعامل مع الاخرين بروح الفريق ويعبر عن رايه باستقلالية وفي ظل الاحترام المتبادل يحضر الطالب المحاضرات بروح ايجابية من أدب الاصغاء وروح المشاركة الفاعلة. يتعاون الطلاب مع زملائه في المجموعات بروح الفريق لإنجاز المهام التي توكل عليهم وممارسة الدور القيادي عند الحاجة يتصر أث الطالب بروح عالية من المسؤولية الشخصية تجاه الغير يجيب الطالب على اسئلة المناقشة المتولدة عن كل فصل من فصول المقرر تحت اشراف يجيب الطالب في اعداد واجباته بالدقة والشفافية والامانة يتجاب الطالب النتائج التي تحصل عليها في الاختبارات بروح ايجابية وتعلمه من أخطائه قبول الطالب النتائج التي تحصل عليها في الاختبارات بروح ايجابية وتعلمه من أخطائه	•	3.2
	يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والبحوث العلمية المطلوبة منهم يتعامل مع الاخرين بروح الفريق ويعبر عن رايه باستقلالية وفي ظل الاحترام المتبادل يحضر الطالب المحاضرات بروح ايجابية من أدب الاصغاء وروح المشاركة الفاعلة. يتعاون الطلاب مع زملائه في المجموعات بروح الفريق لإنجاز المهام التي توكل عليهم وممارسة الدور القيادي عند الحاجة يتصر في الطالب بروح عالية من المسؤولية الشخصية تجاه الغير يجيب الطالب على اسئلة المناقشة المتولدة عن كل فصل من فصول المقرر تحت اشراف يجيب الطالب في اعداد واجباته بالدقة والشفافية والامانة	•	

ج. موضوعات المقرر

ساعات الاتصال	قائمة الموضوعات	م
4	مفاهيم أساسية في علم الإقتصاد: • تعريف علم الإقتصاد • النظم الإقتصادية: النظام الإقتصادي الرّأسمالي, النظام الإقتصادي الإشتراكي, النظام الإقتصادي المختلط و النظام الإقتصادي الإسلامي.	1
4	النظام الاقتصاد الاسلامي والمشكلة الاقتصادية النظام الاقتصاد الإسلامي: علماً ونظاماً. الخصائص المميزة للنظام الاقتصاد الإسلامي: عقدية وأخلاقية وفقهية	2

4	العجارة الحارجية (الدولية) - أهمية التجارة الخارجية و خصائصها.	8
4	تعريف النقود و وظائفها تعريف البنوك , أنواعها و وظائفها البنك المركزي: دوره و أهميته - البنك المركزي: دوره و أهميته التجارة الخارجية (الدولية)	7
4	السياسات المالية و النقدية السياسة المالية الإنكماشية و السياسة المالية التوسعية. السياسة النقدية: السوق المفتوحة و الإحتياطي النقدي دور السياسة المالية و السياسة النقدية في تحقيق الإستقرار الإقتصادي. توزيع الدخل على عناصر الإنتاج.	6
4	البطالة و التضخم تعريف البطالة و أنواعها البطالة و مستويات الأجور. تعريف التضخم و أنواعه. الآثار الإقتصادية للتضخم.	
2	السوق: تعريقه و أنواعه مفهوم السوق و هيكله التنافسي. السوق التنافسية: السعر العادل، الضوابط الفقهية حيال الغش، النجش، بيوع الغرر، الغبن، بيع لا يملك الخ. السوق الاحتكارية: مقارنة بين فهومها الفقهي والاقتصادي، بيان حكمها الشرعي، توضيح مفاسدها الاقتصادية	5
2	سلوك المستهلك عناصر نظرية سلوك المستهلك الحرية الاقتصادية المنضبطة دالة المنفعة الاستهلاكية تعظيم المنفعة الرشد الاقتصادي وضوابطه.	4
2	سلوك المنتج مفهوم الإنتاج. ضوابط الإنتاج. تعظيم الأرباح. خصائص المنتج في الإقتصاد الإسلامي عناصر الإنتاج في الاقتصاد الإسلامي: (راس المال النقدي، رأس المال العيني، الأرض، العمل، المنظم).	3
	 أهداف النظام الاقتصاد الإسلامي. المشكلة الاقتصادية وموقف الاقتصاد الاسلامي منها. مدخل لعلاج المشكلة الاقتصادية من منظور النظام الاقتصاد الإسلامي. 	

د. التدريس والتقييم:

1. ربط مخرجات التعلم للمقرر مع كل من استراتيجيات التدريس وطرق التقييم

طرق التقييم	استراتيجيات التدريس	1. ربط مطربات التعلم مخرجات التعلم	الرمز
		المعرفة والفهم	1.0
■ اختبارات.	• محاضرات سد ت	 يعرف الطالب المصطلحات والمفاهيم الخاصة بالاقتصاد الإسلامي يعرف الطالب أسس استخدام قواعد الاقتصاد الإسلامي في التحليل الاقتصادي يعدد الخصائص والضوابط الإسلامية للمستهلك والمنتج والسوق يعرف النظم والمؤسسات التي تحكم أداء الاقتصاد الاسلامي 	1.1
 الواجبات. 	 مناقشة العصف الذهني 	 يعرف الطالب موضوعات الاقتصاد الجزئي 	1.2
■ أسئلة شفهية	 التعلم التعاوني 	والكلي بمنظور اسلامي يستعرض فاعلية آليات الاقتصاد الاسلامي في حسن تخصيص الموارد الاقتصادية النادرة مقارنة بالنظم الأخرى يستعرض الطالب القضايا والنوازل الاقتصادية المعاصرة في الاسلام	1.3
		 يعدد التطبيقات في مجال القطاع المصرفي والتمويلي الإسلامي 	
		المهارات	2.0
 اختبارات. الواجبات. البحوث والواجبات. أسئلة شفهية 	 محاضرات مناقشة العمل الجماعي العصف الذهني التعلم التعاوني 	يطبق المعارف والضوابط في حل المشكلات الاقتصادية المطروحة يستنبط الطالب المبادئ الاقتصادية من النصوص الشرعية يعرض الطالب عقيدته الاسلامية بأسلوب عقلاني عصري وبتفهم جيد للتحديات الاقتصادية المعاصرة يقارن بين اليات الاقتصاد الإسلامي والنظم الاقتصاد الأخرى خاصة في مجال المصرفي يتعرف الطالب على الأساليب الرياضية والإحصائية المناسبة لحل مسألة معينة، وتطبيقها، وتفسير النتائج. يستخدم الطالب تقنيات المعلومات والاتصالات، خاصة الإنترنت، لجمع المعلومات، وفهمها، وتبادل المعلومات والأفكار مع الأخرين. يتواصل بفاعلية شفهيًا وكتابيًا مع الاخرين. يتواصل بفاعلية شفهيًا وكتابيًا مع الاخرين.	2.1
		على الطالب القضايا الاقتصادية العصرية	2.3
		القيم	3.0
 البحوث والواجبات. أسئلة شفهية 	مناقشةالعمل الجماعيالتعلم التعاوني	 يتحمل مسؤولياته ويطور من قدراته الذاتية يطور الطالب قدراته الشخصية من خلال التعلم الذاتي يتجاوب الطلاب أثناء المحاضرات مع أستاذ المقرر، وتقبل الملاحظات والنصائح المقدمة لهم من أجل تحسين عملية التعلم تحمل الطلاب مسئولية إنجاز التمارين والأعمال المطلوبة منهم 	3.1

طرق التقييم	استراتيجيات التدريس	مخرجات التعلم	الرمز
		 يتعامل مع الاخرين بروح الفريق ويعبر عن رايه باستقلالية وفي ظل الاحترام المتبادل يحضر الطالب المحاضرات بروح ايجابية من أدب الاصغاء وروح المشاركة الفاعلة. يتعاون الطلاب مع زملائه في المجموعات بروح الفريق لإنجاز المهام التي توكل عليهم وممارسة الدور القيادي عند الحاجة يتَصَرَرُ فُ الطالب بروح عالية من المسؤولية الشخصية تجاه الغير يجيب الطالب على اسئلة المناقشة المتولدة عن كل فصل من فصول المقرر تحت اشراف الاستاذ. 	3.2
		 يلتزم الطالب في اعداد واجباته بالدقة والشفافية والامانة قبول الطالب النتائج التي تحصل عليها في الاختبارات بروح ايجابية وتعلمه من أخطائه يتصرف الطالب بشكل أخلاقي والالتزام بالقيم الأخلاقية العالية على النطاق الشخصي والاجتماعي. 	3.3

2. أنشطة تقييم الطلبة

	_	_	ī
م	أنشطة التقييم	توقيت التقييم (بالأسبوع)	النسبة من إجمالي درجة التقييم
1	اختبار فصلي 1	4	%20
2	اختبار فصلي 2	12	%20
3	كوزات وحضور بحوث علمية ومشاركة	خلال الفصل	%20
4	اختبار نهائي	16	%40
5			
6			

. أنشطة التقييم (اختبار تحريري، شفهي، عرض تقديمي، مشروع جماعي، ورقة عمل الخ)

ه ـ أنشطة الإرشاد الأكاديمي والدعم الطلابي:

- الساعات المكتبية المخصصة لأستاذ المادة من قبل القسم
 تواصل أستاذ المادة مع الطلاب عبر مجلد المقرر على شبكة الانترنت أو البريد الإلكتروني.

و _ مصادر التعلم والمرافق:

1. قائمة مصادر التعلم:

المرجع الرئيس للمقرر	- الأسس النظرية للاقتصاد الاسلامي: د. خالد بن سعد المقرن، مكتبة المتنبي، الرياض 1434هـ الأساس في علم الإقتصاد: د. محمود الوادي و آخرون, الإسكندرية 1418 هـ
المراجع المساندة	- النظرية الاقتصادية الاسالامية: ديوسف بن عبد الله الزامل ود. بوعلام بن جيلاني، 1417هـ - النظرية الاقتصادي الاسلامي: د. عبد الرحمن يسري أحمد، الاسكندرية، 1419هـ مدخل للفكر الإقتصادي الإسلامي: د. سعيد مرطان

 □ الموقع العالمي للاقتصاد الإسلامي □ موقع البنك المركزي السعودي. □ موقع وزارة الاقتصاد والتخطيط السعودية 	المصادر الإلكترونية
قائمة بمواد مرجعية أساسية (المجلات العلمية والتقارير وغيرها): مجلة الاقتصاد الإسلامي / بنك دبي الإسلامي . أبحاث الاقتصاد الإسلامي مجلة مجمع الفقه الإسلامي .	أخري

2. المرافق والتجهيزات المطلوبة:

متطلبات المقرر	العناصر
قاعات دراسية تتسع لأربعين طالب	المرافق (القاعات الدراسية، المختبرات، قاعات العرض، قاعات المحاكاة إلخ)
قاعات دراسية بها أجهزة عرض (DATA SHOW)	التجهيزات التقنية (جهاز عرض البيانات، السورة الذكية، البرمجيات)
منصات تعليمية الكترونية (BALCK BOARD)	تجهيزات أخرى (تبعاً لطبيعة التخصص)

ز. تقويم جودة المقرر:

طرق التقييم	المقيمون	مجالات التقويم
غير مباشر (نتائج مسح تقويم الطلاب للمقرر. مرئيات الطلاب التي يتم الحصول عليها من الطلاب مشافهة وكتابيا أو عبر البريد الالكتروني. تعليق الطلاب على المقرر في منتدى طلاب الكلية)	■ الطلاب	فاحاد التحد
 مباشر (في نهاية كل فصل دراسي يقوم منسق المقرر بإعداد تقرير مقرر يلخص فيه الايجابيات والسلبيات ويحدد التغييرات التي ينصح باتخاذها لتطوير المقرر. التواصل مع الخريجين والجهات الموظفة) 	 منسقي المقررات قيادة البرنامج 	فاعلية التدريس
 مباشر (المقارنة المرجعية) غير مباشر (استطلاع آراء) 	قيادة البرنامجالطلاب	فاعلة طرق تقييم الطلاب
 مباشر (التقییم المباشر للطلاب, تبادل النتائج مع اقسام و کلیات أخرى) 	■ أعضاء هيئة التدريس	مدى تحصيل مخرجات التعلم للمقرر
 مباشر (المراجعة الدورية لمفردات المقرر, تقارير المقررات) غير مباشر (استطلاع آراء الطلاب) 	 أعضاء هيئة التدريس منسقي المقررات قيادة البرنامج الطلاب 	مصادر التعلم

مجالات التقويم (مثل. فاعلية التدريس، فاعلة طرق تقييم الطلاب، مدى تحصيل مخرجات التعلم للمقرر، مصادر التعلم ... إلخ) المقيمون (الطلبة، أعضاء هيئة التدريس، قيادات البرنامج، المراجع النظير، أخرى (يتم تحديدها) طرق التقييم (مباشر وغير مباشر)

ح. اعتماد التوصيف

ع. العماد التوصيف	
مجلس القسم	جهة الاعتماد
30	رقم الجلسة
1442/9/21	تاريخ الجلسة

Course Title: Research Project

Course Code: MAT 1499

Program: Bachelor of Science in Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strategie Methods	es and Assessment
2. Assessment Tasks for Students	4
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	5
H. Specification Approval Data	6

A. Course Identification

1. Credit hours: 4			
2. Course type			
a. University College Department ✓ Others			
b. Required ✓ Elective			
3. Level/year at which this course is offered: Level 12 / Year 4			
4.Pre-requisites for this course (if any): Research project course starts in the last trimester of the program study (4 th year – 12 th trimester).			
5. Co-requisites for this course (if any):			
None			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom		
2	Blended		
3	E-learning		
4	Distance learning		
5	Other	60	100%

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	0
2	Laboratory/Studio	0
3	Tutorial	0
4	Others (specify) Readings, Discussions, Reports, and Oral Presentations	60
	Total	60

Comments:

The student works on a problem in an area of advanced mathematics at bachelor level with the guidance of the supervisor

B. Course Objectives and Learning Outcomes

1. Course Description

This course allows students to undertake a research project on a topic of interest. It gives the students an opportunity to perform a subject within the field of mathematics under supervision according to an individual study plan and independence thinking. Also, document and summarize results by writing a research report and present the results of the project.

2. Course Main Objective

- This course enables distinguished students to carry out a sustained, guided, independent study of a topic in mathematics.
- This course is a faculty directed project that could be considered advanced in nature.
- To develop an appropriate mathematical literacy as well as competency in documentation, analyses and presentation of results.

• To develop experience of report-writing, oral presentation and visual presentation.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	To apply mathematical knowledge and skills to a specific research project.	K1, K2
1.2	To provide in-depth knowledge of currently active research areas in Mathematics.	K1, K2
2	Skills:	
2.1	To develop techniques of problem solving.	S1, S2
2.2	To communicate mathematics clearly and precisely both orally and in writing.	S4
2.3	To use Internet in searching for scientific information	S5
2.4	To carry out calculations orally and mentally.	S3
3	Values:	
3.1	To work individually.	V1, V3
3.2	To work in groups.	V1, V2

C. Course Content

No	List of Topics	Contact Hours
1	The student undertakes supervised independent study and review of research documentation in active field of Mathematics with the guidance of the research supervisor.	60
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	To apply mathematical knowledge and skills to a specific research project.	5 hours weekly of discussions with the supervisor	 Continuous evaluation of the research by the supervisor
1.2	To provide in-depth knowledge of currently active research areas in Mathematics.	Self-study and personal work	Written reportOral presentation
2.0	Skills		
2.1	To develop techniques of problem solving.	Real-life problems	• Continuous evaluation of the research by the supervisor
2.2	To communicate mathematics clearly and precisely both orally and in writing.	Self-study	Written reportOral presentation

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.3	To use Internet in searching for scientific information	Self-study	• Written report
2.4	To carry out calculations orally and mentally.	Real-life problems	Oral presentation and discussions
3.0	Values		
3.1	To work individually.	Personal questions	Participation
3.2	To work in groups.	Team work	Homework and small parts of the project

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	First continuous evaluation (reported by the supervisor)	4 th week	20%
2	Second continuous evaluation (reported by the supervisor)	8 th week	30%
3	Written report in English (20-35 pages)	During the trimester	50%
4	Short talk in English language (oral presentation 15 minutes)	13 th week	3070

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- There are 6 office hours per week reserved by each professor, planed on his timetable, to help the students on their problems.
- All department students are assigned two academic advisors who will act as a mentor, providing academic and career advice, and general counseling.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Students will be guided by study notes, books, research articles and original sources (or English translations where necessary), which are provided. The students will need to master the appropriate mathematics and ultimately present his /her work in the form of a final presentation. Other appropriate learning resources are possible related to the nature of the research project.
Essential References Materials	Subject dependent
Electronic Materials	Subject dependent
Other Learning Materials	Subject dependent

2. Facilities Required

2. Pacifics Required	
Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Each class room should be equipped with a whiteboard and a projector. Laboratories should be equipped with computers and an internet connection.
Technology Resources (AV, data show, Smart Board, software, etc.)	The rooms should be equipped with data show and Smart Board.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment, Quality of learning resources	Students	During the term and at the end of the course each student will complete two evaluation forms.
Extent of achievement of course learning outcomes, Quality of learning resources	Instructor	At the end of each term the course instructor should complete the course report, including a summary of student questionnaire responses appraising progress and identifying changes that need to be made if necessary.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
Reference No.	11/1444
Date	(16/11/2022) 22/04/1444

Course Title:	Field Training
Course Code:	MAT 1497
Program:	Bachelor of Science in Mathematics
Department:	Mathematics and Statistics
College:	College of Science
Institution:	Imam Mohammad Ibn Saud Islamic University

Table of Contents

A. Field Experience Identification	217
B. Learning Outcomes, and Training and Assessment Methods	217
1. Field Experience Learning Outcomes	217
2.Alignment of Learning Outcomes with Training and Assessment Methods/ Acti	vities217
3. Field Experience Learning Outcomes Assessment	219
C. Field Experience Administration	219
1. Field Experience Locations	219
2. Supervisory Staff	220
3. Responsibilities	221
4. Field Experience Implementation	222
5. Safety and Risk Management	223
G. Training Quality Evaluation	223
E. Specification Approval Data	223

A. Field Experience Identification

1. Credit hours: 4

2. Level/year at which this course is offered: 12/4 (last term of the program).

3. Dates and times allocation of field experience activities.

• Number of weeks: (12)

• Number of days: (36)

• Number of hours: (180)

4. Pre-requisites to join field experience (if any):

Student must complete at least 160 credit hours.

B. Learning Outcomes, and Training and Assessment Methods

1. Field Experience Learning Outcomes

	CLOs Aligned				
Upo	Upon completion of this field training, students should be able to:				
1	Knowledge and Understanding				
1.1	Demonstrate knowledge of the context of the professional career before graduation.	K1, K2			
1.2	Explain professional interests in related fields of Mathematics program.	K1, K2			
1.3	Identify a range of opportunities for learning, development and mentoring throughout the duration of the training.	K1, K2			
2	Skills:				
2.1	Apply what has been learned in classroom to real-world situations.	S1			
2.2	Build critical thinking and innovative problem-solving skills with confidence and rigor.	S1, S2			
2.3	Proficiently communicate oral and written information in a manner that reflects professional social work skills.	S4			
2.4	Confront the various pressures that he/she may face in the labor market.	S1			
2.5	Proficiently interact with other professionals.	S4			
3	Values:				
3.1	Develop discipline, self and social responsibility.	V1, V2			
3.2	Apply ethic principles of the profession.	V1, V3			
3.3	Enhance integrity and honesty.	V1			

2. Alignment of Learning Outcomes with Training Activities and Assessment Methods

Code	Learning Outcomes	Training Methods/Activities	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Demonstrate knowledge of the context of the professional career before graduation.	participation with the field supervisor at work place.	Discussion Specific rubric
1.2	Explain professional interests in related fields of Mathematics program.	Subject-based study essays	Rubric of evaluation

Code	Learning Outcomes	Training Methods/Activities	Assessment Methods	
		written-short answer/long answer/report		
1.3	Identify a range of opportunities for learning, development and mentoring throughout the duration of the training.	Oral test Presentation Written report	Evaluate student's Discussion	
2.0	Skills			
2.1	Apply what has been learned in classroom to real-world situations.	workplace performance;	PortfolioStudent's diary/journal.	
		Oral Presentations		
2.2	Build critical thinking and innovative problem-solving skills with confidence and rigor.	Written research questions/ Reflection	Student portfolio	
2.3	Proficiently communicate oral and written information in a manner that reflects professional social work skills.	Written tasks Discussion	Evaluation of Report and mails.	
2.4	Confront the various pressures that he/she may face in the labor market.	participation with the field supervisor at workplace	Direct observation	
2.5	Proficiently interact with other professionals.	participation with the field supervisor at workplace	Direct observation	
3.0	Values			
3.1	Develop discipline, self and social responsibility	Discussion, behavior	Portfolio and direct observation	
3.2	Apply ethic principles of the profession.	Discussion, behavior	Direct observation portfolio	
3.3	Enhance integrity and honesty	Discussion, behavior	Direct observation	

3. Field Experience Learning Outcomes Assessment

a. Students Assessment Timetable

#	Assessment task*	Assessment timing (Week)	Percentage of Total Assessment Score
1	Orientation session attendance.	First week	5% by the teaching staff advisor.
2	Site Visit	About Week 4 & week 8	10% by the teaching staff advisor.
3	Appreciation on student's performance (using supervisor's reports and student's weekly)	During the 12 weeks of the training.	10% by the teaching staff advisor.
4	Week log of activities	Weekly	10% by the teaching staff advisor and 5% by training advisor.
5	Demonstrate Learning Outcomes.	During the 12 weeks of the training.	50% by training advisor.
6	Student Field Performance Appraisal	Between Week 12 and week 13.	10% by student.

^{*}Assessment task (i.e., Practical test, oral test, presentation, group project, essay, etc.)

b. Assessment Responsibilities

#	Category	Assessment Responsibility
1	Teaching Staff	 The teaching staff supervisor assesses: the attendance and participation of the student in the orientation session, the performance during the field visit, student's performance by using supervisor's reports and student's weekly, which express the application of student's knowledge to actual practice.
2	Field Supervisor	The field supervisor assesses overall performance and progress of the student during the training.
3	Others (specify)	N.A.

C. Field Experience Administration

1. Field Experience Locations

a. Field Experience Locations Requirements

Suggested Field Experience Locations	General Requirements*	Special Requirements**		
Maaden Saudi Aramco KACST	The workplace must be registered and approved by the competent Saudi instances.	The field experience location activities must be appropriate and consistent with the mission of Imam university		

The Zakat, Tax and	Legal status as determined by	and the requirements for field
Customs Authority	the law in Saudi Arabia.	experience learning outcomes.
(ZATCA)		
Public School	Efficiency and safety.	
Private School		
General Authority for		
Statistics		

^{*}Ex: provides information technology ,equipment ,laboratories ,halls ,housing ,learning sources ,clinics etc.

b. Decision-making procedures for identifying appropriate locations for field experience

Before starting the process for field experience, the college should state a range of partnerships with potential training organizations that may provide high-level training opportunities.

The list of partnerships should be available in college of science website.

These partnerships should be based on requirements listed above.

The college should communicate the present document (including qualifications and responsibilities) to the training organization to ensure skills requirements to determine an appropriate field supervisor.

2. Supervisory Staff

a. Selection of Supervisory Staff

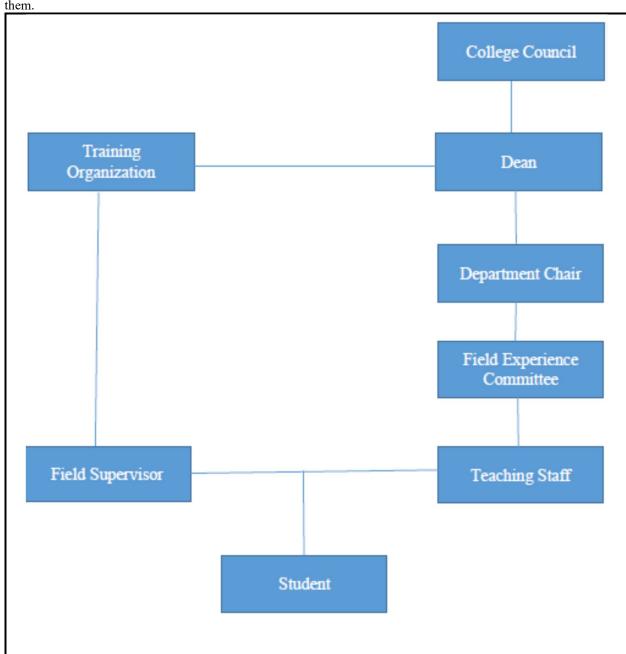
Selection	Field Supervisor	Teaching Staff		
Items	Supervisor			
Qualifications	A permanent member of the training organization.	A member of the teaching staff at the department of Mathematics and Statistic is assigned authority and responsibility of supervising and evaluating the overall components of the field experience according the present specifications document.		
Selection Criteria	depending to the training organization criteria.	 Ability to supervise a team, to establish priorities and manage competing deadlines for self and others. Experience in the supervision and leadership of staff. Well-developed oral and written communication skills. Ability to build and maintain effective working relationships and act with diplomacy and discretion when dealing with sensitive and confidential issues Ability to develop effective social and professional networks. 		

b. Qualification and Training of Supervisory Staff

(Including the procedures and activities used to qualify and train the supervisory staff on supervising operations, implementing training activities, the follow-up and evaluation of students, etc.)

The field supervisor is able for supervising, training and evaluating the student throughout the training period., including the follow-up and monitoring. He should notify the

^{**}Ex: Criteria of the training institution or related to the specialization, such as: safety standards, dealing with patients in medical specialties, etc.


corresponding teaching staff of any concerns or problems. In addition, s/he has the following key skills and qualifications:

- Scientific academic path.
- Leadership and team management skills.
- Attention to detail and problem-solving skills.
- Written and verbal communication skills
- Advanced expertise in a specific training organization activities
- Deep knowledge of training organization policies.

3. Responsibilities

a. Field Experience Flowchart for Responsibility

including units, departments, and committees responsible for field experience, as evidenced by the relations between them.

b. Distribution of Responsibilities for Field Experience Activities

Activity	Department or College	Teaching Staff	Student	Training Organization	Field Supervisor
Selection of a field experience site	V		Ø		
Selection of supervisory staff	V				
Provision of the required equipment				V	
Provision of learning resources				V	
Ensuring the safety of the site				V	
Commuting to and from the field experience site		V	Ø		V
Provision of support and guidance		Ø			V
Implementation of training activities (duties, reports, projects,)		V			V
Follow up on student training activities		Ø			V
Adjusting attendance and leave		Ø			V
Assessment of learning outcomes		V			V
Evaluating the quality of field experience	Ø	Ø	Ø	Ø	V
Others (specify)					

4. Field Experience Implementation

a. Supervision and Follow-up Mechanism

The mechanism used for supervision and follow-up student is essentially based on:

Follow-up forms

Interview follow-up

Student portfolio Daily attendance record.

Evaluation rubric

b. Student Support and Guidance Activities

- ✓ Session of orientation, necessary documentations (forms and rubrics, and guide manual).
- ✓ The workplace is expected to provide documents for student training (including internal policy manuals, electronic sources).
- ✓ The workspace is expected to provide also appropriate desk gadgets including printer/internet access with appropriate electronic devices and software.

5. Safety and Risk Management

5. Safety and Risk Wanagement				
Potential Risks	Safety Actions	Risk Management Procedures		
Potential Risks depend on the workspace and production activities of the training organization. Potential sources of harm and hazards should be identified. This issue should be discussed with Training Organization before starting the training	Basic safety rules and tips that need to be followed at the worksite. Safety guidelines must be established and maintained: safety procedures for laboratory investigations and field trips should be implemented.	 Respecting the last updated version of the booklet "Implementation of Risk Management and Safety Culture" published by The Ministry of Labor and Social development. providing an understanding of how to deal with different types of work-training in order to help reduce exposure risks. Offering short risk management training at the beginning of training. 		

G. Training Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Student performance, effectiveness and efficiency	Field Supervisor,	Direct and Indirect
Quality of learning resources Effectiveness of Training and assessment. Student performance	Teaching staff	Indirect
Evaluation of the field Experience (workspace, Quality of learning resources, supervisory, achievements, skills, behavior, time)	Student	Indirect

Evaluation areas (e.g., Effectiveness of Training and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Supervisory Staff, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

E. Specification Approval Data

Council / Committee	nmittee Quality Unit Mathematics and Statistics Department	
Reference No.	Department council No. 11	
Date	22/11/1444	