

Course Specification

— (Bachelor)

Course Title: Numerical Methods

Course Code: MAT 1346

Program: Bachelor of Science in Civil Engineering

Department: Civil Engineering

College: Engineering

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2024 – V1

Last Revision Date: 08/10/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. Crea	iit nours:	

3 (3 Lectures, 0 Lab, 1 Tutorial)

2. Course type

A.	□University	☐ College	⊠ Program	□Track	□Others
В.	□ Required		□Elect	ive	

3. Level/year at which this course is offered: Level 6/ Year 3

4. Course general Description:

Introduction to numerical methods for students in science and engineering, Topics include floating-point computation, systems of linear equations, approximation of functions and integrals, the single nonlinear equation, and the numerical solution of ordinary differential equations. Applications in science and engineering: include some programming as well as the use of high quality mathematical library routines.

5. Pre-requirements for this course (if any):

MAT 1236 and CS 1108

6. Co-requisites for this course (if any):

None.

7. Course Main Objective(s):

The course is intended to introduce the following important aspects of Numerical Methods in Engineering:

- 1. Demonstrate basic numerical methods for solution of root finding, linear and nonlinear systems, curve fitting, differentiation and integration;
- 2. Estimate numerical errors in application of numerical methods;
- 3. Demonstrate basic programming techniques using MATLAB;
- 4. Present numerical results in appropriate fashion.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	0	0%
3	HybridTraditional classroomE-learning	0	0%
4	Distance learning	0	0%

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	15
5.	Others (specify)	0
	Total	60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with progra m	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Recognize theories and concepts used in Numerical Analysis.	K2	4 lecture hours\week 2 tutorial hours\week Self-study	Direct: Regular Exams Assignments Short Quizzes
1.2	Identify the concept of finite difference, approximation by iteration, numerical differentiation and integration, error analysis.	K 1	4 lecture hours\week 2 tutorial hours\week Self-study	Direct: Regular Exams Assignments Short Quizzes
2.0	Skills			
2.1	Apply elementary numerical techniques and rules, including Floating Point Representation, interpolation, Trapezoidal and Simpson Rules, Gaussian Quadrature, Newton Divided Difference, Euler method, Runge-Kutta methods, and matrix algebra tools to solve given reallife problems.	S1, S2	Self-study Real-life problems	Direct: Participations Short Quizzes
2.2	Write efficient, well-documented Matlab code and present numerical results in an informative way.	S4	Self-study Real-life problems	Direct: Participations Short Quizzes
2.3	Implement some numerical methods using Matlab software and CAS.	S4	Self-study Real-life problems	Direct: Participations Short Quizzes
2.4	Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.	S3	Self-study Real-life problems	Direct: Participations Short Quizzes

Code	Course Learning Outcomes	Code of CLOs aligned with progra m	Teaching Strategies	Assessment Methods
3.0	Values, autonomy, and responsibility			
3.1	Work individually and with responsibility	V1, V3	Class discussion and team work	Direct: Participation

C. Course Content

No	List of Topics	Contact Hours
1.	Roundoff and Truncation Errors.	10
2.	Root Finding: Bracketing and Open Methods.	10
3.	Linear Algebraic Equations: Gauss Elimination; LU Method; and Iterative Methods.	10
4.	Curve Fitting: Least-Squares Regression; Interpolation.	10
5.	Numerical Differentiation and Integration.	10
6.	Initial-Value Problems: Euler's methods, Runge-Kutta methods, and Multistep Methods.	10
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HomeWorks, Quizzes, Mini-projects	During the term	10%
2.	First Midterm	Week 6-7	25%
3.	Second Midterm	Week 10-11	25%
4.	Final Exam	Week 15-16	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Chapra, S.C., Raymond P. Canale (2015). Numerical Methods for Engineers, 7th Edition, McGraw Hill.
Supportive References	 Chapra, S.C., (2005). Applied Numerical Methods with Matlab for Engineers and Scientists, 3rd Ed., McGraw Hill S. Rao, S., (2002). Applied Numerical Methods for Engineers and Scientists. TA345.R36
Electronic Materials	None
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources	
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Classrooms: Equipped with whiteboards, projectors, and Sm Boards for interactive lessons and group discussions. Laboratories: Feature computers with internet access, enable hands-on activities and exploration of algebraic and trigonome concepts. Exhibition Rooms: Spaces for showcasing projects a presentations to encourage collaborative learning. 	
Technology equipment (projector, smart board, software)	 Data Show Projectors: For clear presentations in classrooms and labs. Smart Boards: To enhance interactivity during lessons. Mathematical Software: Essential for graphing and analysis. 	
Other equipment (depending on the nature of the specialty)	 Computers: For mini-project and homework and practical applications in laboratories. Advanced Calculators: For computations and problem-solving and supporting the study of limits, continuity, and differentiation. Whiteboards and Markers: To facilitate brainstorming and collaboration. 	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student and teaching staff	Surveys and Questionnaires
Effectiveness of Students assessment	Course Coordinator	Peer Reviews
Quality of learning resources	Students and teaching staff	Classroom Observations
The extent to which CLOs have been achieved	Student Representatives	Student Performance Evaluations (exams, projects) CLOs Excel sheet.
Other	None	

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	MATHEMATICS AND STATISTICS DEPARTMENT COUNCIL
REFERENCE NO.	8/1446
DATE	05/04/1446 (08/10/2024)

