

Course Specification

- (Bachelor)

Course Title: Quantum Mechanics (1)

Course Code: PHY 1312

Program:

Bachelor of Science in Physics

Department: Physics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 4

Last Revision Date: 26/09/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7

A. General information about the course:		
1. Course Identification		
1. Credit hours: (3)		
2. Course type		
A. □University □ College □ Department □ Track □ Others		
B. ⊠ Required □ Elective		
3. Level/year at which this course is offered: (Level 5/ Year 3)		
4. Course General Description: This course provides an introduction to the concepts and formalism of quantum mechanics. Primary		
emphasis is on the time-independent Schrödinger equation and its applications to simple systems such as the harmonic oscillator, the square-well potential, Delta-function potential, and the hydrogen atom without spin. The postulates of quantum mechanics will be developed in the formalism of operator observables acting on a linear state space of wave functions, in analogy with finite dimensional matrix operations on vectors		
5. Pre-requirements for this course (if any):		
Modern Physics, PHY 1250		
6. Co-requisites for this course (if any):		
7. Course Main Objective(s):		
 Know the main features of the historical development of quantum mechanics. Acquire knowledge of the core aspects of quantum mechanics. Learn how to use the tools of quantum mechanics. 		

2. Teaching mode (mark all that apply)

Apply foundational mathematics to quantum mechanics.

Mode of Instruction	Contact Hours	Percentage
Traditional classroom	60	100%
E-learning		
Hybrid Traditional classroom		
	Traditional classroom E-learning	Traditional classroom 60 E-learning Hybrid

Learn the techniques to solve, through discussion and reading, a wide range of specific theoretical problems including their backgrounds and implications.

No	Mode of Instruction	Contact Hours	Percentage
	• E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	30
5.	Others (specify)	0
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understand	ing		
1.1	Outline the background and main features of the historical development of quantum mechanics.	K1, K2	Lectures.Tutorials.Class discussions.	Exams.Participation.Discussions.
1.2	State the historical importance of De Broglie's hypothesis, Schrödinger's wave function, and Born's probabilistic interpretation of the wave function.	K1, K2	Lectures.Tutorials.Class discussions.	Exams.Homework.Quizzes.
1.3	Describe and solve the Schrödinger equation in the standard one-dimensional examples-infinite and finite square wells, infinite well potentials, free particle, harmonic oscillator, and hydrogen atom.	K1, K2	Lectures.Class discussions.Tutorials.	Participation.Exams.Discussions.Homework.

Code	Course Learning Outcomes	Code of PLOs aligned with the	Teaching Strategies	Assessment Methods
1.4	Define and describe the Hilbert space, Dirac notation, and Basic postulates of Quantum Mechanics.	K1, K2 • Lectures. • Class discussions. • Tutorials		Participation.Exams.Discussions.Homework.
2.0	Skills			
2.1	Explain and summarize the basic knowledge gained from studying electromagnetic fields course.	S1, S2 • Class discussions. • Disc		Exams.Discussions.Participation.
2.2	Develop the students ability to solve and analyze problems in physics related the topics covered by the course.	S2, S3	 Problem classes and group tutorial. Homework assignments as well as problems solutions. 	Exams.Discussions.Homework.
2.3	Communicate in a clear and concise manner orally, and using IT for acquiring and analyzing information.	S4, S5	 Lectures. Class discussions. Tutorials. Encourage students to use electronic mail the course 	
3.0	Values, autonomy, and responsibility			
3.1	Show the collaboration and inter-professionalism in class discussions or team works, as well as solve problems independently.	V1, V2, V3	Small team tasksOpen discussion at classroom.Office hours.	Participation.Homework.Miniproject(s).

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction (Historical Background) : Development of the quantum theory, Experiments that led to the formulation of quantum mechanics, Wave-particle duality.	4
2.	Wave Function: Schrödinger equation, Statistical interpretation, Probability, Normalization, Fourier transform, Momentum, Position and momentum operators, Expectation value, Eherenfest's theorem, Uncertainty principle.	16

3.	Time-Independent Schrödinger Equation: Introduction, Method of separation of variables, Stationary states, Hamiltonian, Linear combination, Infinite square well, Harmonic oscillator, Free particle, Deltafunction potential, Finite square well, Hydrogen atom.	20
4.	Formalism& Mathematical background: Hilbert space; vectors; Inner product; Linear transformation, Observables; Hermitian operators; Determinate states, Eigenfunctions of a Hermitian operator; Discrete spectra; Continuous spectra, Generalized statistical interpretation, The Uncertainty principle; Proof the generalized uncertainty principle; The Minimal-uncertainty wave packet; The Energy-time uncertainty principle, Dirac notation; Matrix elements; Ket; Bra; Dual space; Projection operator.	20
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Class Activities (class quizzes, homework, solving problems, etc)	weekly	10 %
2.	Midterm Exam 1	6 th week	25 %
4.	Midterm Exam 2	12 th week	25 %
5.	Final Exam	16 th week	40 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	- Sadiku M., <i>Elements of Electromagnetic</i> , 2 nd Edition, Saunders College (1995).	
Supportive References	 Nayfeh M.H. and Brussel M.K, <i>Electricity and Magnetism</i>, John-Wiley & Sons, New York (1985). Griffiths D. J., <i>Introduction to Electrodynamics</i>, 3rd Edition, Prentice Hall, N. J, USA (1999). 	
Electronic Materials	https://units.imamu.edu.sa/colleges/en/science/Pages/default .aspx	
Other Learning Materials		

2. Required Facilities and equipment

Items	Resources
facilities	- Classrooms. - Labs.

Items	Resources
(Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	
Technology equipment (projector, smart board, software)	- Classroom equipped with a whiteboard and a projector.
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	- Students - Second examiner	- Indirect (The students complete the evaluation forms at the end of term. Final exam is evaluated by the second examiner)
Effectiveness of Students assessment	- Instructors	- Direct (exams, HW, project,)
Quality of learning resources	- Faculty - Students	- Indirect (surveys)
The extent to which CLOs have been achieved	- Instructors - Program Leaders	- Direct (excel sheet)
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Quality Unit-Physics Department
REFERENCE NO.	Department council No. 06
DATE	26/09/2022

