

Course Specification

- (Bachelor)

Course Title Laser Physics

Course Code: PHY 1445

Program: Bachelor of Science in Physics

Department: Physics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 1

Last Revision Date: 26/09/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7

A. General information about the course:

1. Co	ourse Identifica	tion			
1. 0	Credit hours: (3)			
2. 0	Course type				
Α.	□University	☐ College	□ Department	□Track	□Others
В.	☐ Required		⊠ Elect		- >
			is offered: (Leve	el 7 or 8/ Year4	4)
4. 0	Course General	Description:			
phy thre adv	rsical and princi oughout on key anced topics in	ples of laser ope underlying conc laser physics. Th of confidence for	date, and comprel ration and design epts, lead from the le course is aimed r working with las	. Simple explant e basics of laser to give student	ations, based r action to ts practical skills
5. Pre-requirements for this course (if any):					
Atomic physics, PHY 1362					
6. 0	Co-requisites fo	r this course (if ar	ny) :		
7. 0	Course Main Ob	jective(s):			
•	physics of mode Full knowledge To understand s	rn optical techno of the descriptio some application		interaction of li e associated phy	ysics.

industrial.

• Laser applications in different disciplines such as of military, medical and

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning		
	Hybrid		
3	 Traditional classroom 		
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	30
5.	Others (specify)	0
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understandi	ing		
1.1	Recognize the scientific method of inquiry to conclude concepts of ordinary Light and Lasers.	K1, K2	Lectures.Tutorials.Class discussions.	Exams.Participation.Discussions.
1.2	Describe the scientific method of inquiry to conclude concepts of the Laser Action.	K1, K2	Lectures.Tutorials.Class discussions.	Exams.Homework.Quizzes.
1.3	Describe the scientific method of inquiry to conclude concepts of laser Oscillator.	K1, K2	Lectures.Class discussions.Tutorials.	Participation.Exams.Discussions.Homework.
1.4	Describe the scientific method of inquiry to conclude concepts of	K1, K2	Lectures.Class discussions.Tutorials.	Participation.Exams.Discussions.

		Code of PLOs		
Code	Course Learning Outcomes	aligned with the program	Teaching Strategies	Assessment Methods
	properties of laser radiations.			Homework.
1.5	Describe the scientific method of inquiry to conclude concepts of Laser System.	K1, K2	Lectures.Class discussions. Tutorials.	Participation.Exams.Discussions. Homework.
2.0	Skills			
2.1	Explain and summarize the basic knowledge gained from studying laser physics.	S1, S2	Lectures.Class discussions.Tutorials.	Exams.Discussions.Participation.
2.2	Develop the students ability to solve and analyze problems in physics related the topics covered by the course.	S2, S3	 Problem classes and group tutorial. Homework assignments as well as problems solutions. 	Exams.Discussions.Homework.
2.3	Communicate in a clear and concise manner orally, and using IT for acquiring and analyzing information.	S4, S5	 Lectures. Class discussions. Tutorials. Encourage students to use electronic mail and internal network for submitting homework and assignments. Use digital library. 	 Exams. Participation and activities of students in the course community and blackboard. Homework.
3.0	Values, autonomy, and resp	onsibility		
3.1	Show the collaboration and inter-professionalism in class discussions or team works, as well as solve problems independently.	V1, V2, V3	Small team tasksOpen discussion at classroom.Office hours.	Participation.Homework.Mini-project(s).

C. Course Content

No	List of Topics	Contact Hours
1.	Ordinary Light and Lasers: Nature of the Light, Brief history of Lasers, Interaction of radiation with matter, Energy levels, Population density, Boltzmann distribution, Transition life-times, Allowed and forbidden transitions, Stimulated absorption, Spontaneous emission and stimulated emission, Einstein's coefficients, Einstein's relations.	12

2.	Laser Action: Condition for large stimulated emission, Population inversion, Condition for light amplification, Gain co-efficient, Threshold gain coefficient, Line shape function, Active medium, Metastable states, Pumping schemes: three level and four level.	12
3.	Laser Oscillator: Optical feedback, Round trip gain, Threshold gain, Critical population inversion, Optical resonator, Condition for steady state oscillations, Cavity resonance frequencies.	12
4.	Properties of Laser Radiations: Laser Line-width, Laser frequency stabilization, Beam Divergence, Beam coherence, Brightness, Focusing properties of laser radiation, Laser modes, Doppler broadening, Broadening small signal gain, 3 level laser and 4 level rate equations Q-switching.	12
5.	Laser System: Active medium. Excitation mechanism feedback mechanism. Atom Gas: Helium-Neon laser (He-Ne). Ion gas, Argon ion laser (Ar+). Molecular Gas: Carbon dioxide laser (CO2). Nitrogen laser (N2). Solid state lasers: Ruby laser. Neodymium YAG and Nd glass laser. Diode laser: (semiconductor laser, injection laser) - Liquid Laser: Dye laser.	12
6.	Ordinary Light and Lasers: Nature of the Light, Brief history of Lasers, Interaction of radiation with matter, Energy levels, Population density, Boltzmann distribution, Transition life-times, Allowed and forbidden transitions, Stimulated absorption, Spontaneous emission and stimulated emission, Einstein's coefficients, Einstein's relations.	12
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Class Activities (class quizzes, homework, solving problems, etc)	weekly	10 %
2.	Midterm Exam 1	6 th week	25 %
3.	Midterm Exam 2	12 th week	25 %
4.	Final Exam	16 th week	40 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	- Silfvast W.T., <i>Laser Principles</i> , 2 nd Edition, Cambridge, ISBN 0-521-83345-0, (2004).
Supportive References	- Masilamani V. and Azzeer A.M., <i>Laser: The Light Extraordinary</i> , Anuradha Agencies (1999).

Electronic Materials

https://units.imamu.edu.sa/colleges/en/science/Pages/default .aspx

Other Learning Materials

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	- Classrooms. - Labs.
Technology equipment (projector, smart board, software)	- Classroom equipped with a whiteboard and a projector.
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students Second examiner	Indirect (The students complete the evaluation forms at the end of term. Final exam is evaluated by the second examiner)
Effectiveness of Students assessment	Instructors	Direct (exams, HW, project,)
Quality of learning resources	Faculty Students	indirect (surveys)
The extent to which CLOs have been achieved	Instructors Program Leaders	Direct (excel sheet)
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL/COMMITTEE	Quality Unit-Physics Department
REFERENCE NO.	Department council No. 06
DATE	26/09/2024

