



# **Course Specification**

- (Bachelor)

Course Title: Physics (1)

Course Code: PHY 1117

**Program: B.Sc. in Engineering** 

**Department: Physics** 

College: Science

**Institution: Imam Mohammad Ibn Saud Islamic University** 

Version: 1-Template 2024

Last Revision Date: 26/09/2024





# **Table of Contents**

| A. General information about the course:                                       | 3 |
|--------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 |
| C. Course Content                                                              | 5 |
| D. Students Assessment Activities                                              | 6 |
| E. Learning Resources and Facilities                                           | 6 |
| F. Assessment of Course Quality                                                | 7 |
| G. Specification Approval                                                      | 7 |





| A. Ge         | A. General information about the course:                                                                                                                                                                                                                                                                                                                                                                       |                    |                    |               |          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|---------------|----------|
| <b>1. C</b> o | . Course Identification                                                                                                                                                                                                                                                                                                                                                                                        |                    |                    |               |          |
| 1. C          | redit hours: (3                                                                                                                                                                                                                                                                                                                                                                                                | 3)                 |                    |               |          |
| 2. C          | Course type                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |               |          |
| A.            | □University                                                                                                                                                                                                                                                                                                                                                                                                    | ☐ College          | ☐ Department       | □Track        | ⊠ Others |
| В.            | ⊠ Required                                                                                                                                                                                                                                                                                                                                                                                                     |                    | □Elect             | ive           |          |
| 3. L          | evel/year at w                                                                                                                                                                                                                                                                                                                                                                                                 | hich this course   | is offered: ( Leve | el 1/ Year 1) |          |
| 4. C          | ourse General                                                                                                                                                                                                                                                                                                                                                                                                  | Description:       |                    |               |          |
| conn<br>pote  | This course covers fundamental physics concepts, focusing on kinematics, work, and energy, with connections to everyday life. Topics include vectors, motion in 1, 2, and 3 dimensions, force, kinetic and potential energy, center of mass, linear momentum, rotation, equilibrium, and elasticity. While advanced math is not required, basic math, including some trigonometry and simple algebra, is used. |                    |                    |               |          |
| 5. P          | re-requiremer                                                                                                                                                                                                                                                                                                                                                                                                  | nts for this cours | <b>e</b> (if any): |               |          |
| None          | e                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |               |          |
| 6. C          | 6. Co-requisites for this course (if any):                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |               |          |
| Phys          | Physics Lab (1), PHY 1119                                                                                                                                                                                                                                                                                                                                                                                      |                    |                    |               |          |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |               |          |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |               |          |
| 7. C          | ourse Main Ob                                                                                                                                                                                                                                                                                                                                                                                                  | ojective(s):       |                    |               |          |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |               |          |

At the end of the course, students will be able to:

- Understand the fundamental physical principles in Mechanics.
- Build up an understanding of how physical principles are applied in everyday life and engineering.
- Provide a clear understanding of the basic concepts and integrating their knowledge in various disciplines of physics.
- Build up basic skills necessary for solving problems with practical applications by using physical principles.
- Familiarize with the basic skills necessary for understanding of physical principles in terms of multiple representations: graphs, diagrams, equations.

#### 2. Teaching mode (mark all that apply)

| No | Mode of Instruction                       | Contact Hours | Percentage |
|----|-------------------------------------------|---------------|------------|
| 1  | Traditional classroom                     | 60            | 100%       |
| 2  | E-learning                                |               |            |
|    | Hybrid                                    |               |            |
| 3  | <ul> <li>Traditional classroom</li> </ul> |               |            |
|    | <ul><li>E-learning</li></ul>              |               |            |





| No | Mode of Instruction | Contact Hours | Percentage |
|----|---------------------|---------------|------------|
| 4  | Distance learning   |               |            |

#### **3. Contact Hours** (based on the academic semester)

| No    | Activity          | Contact Hours |
|-------|-------------------|---------------|
| 1.    | Lectures          | 30            |
| 2.    | Laboratory/Studio | 0             |
| 3.    | Field             | -             |
| 4.    | Tutorial          | 30            |
| 5.    | Others (specify)  | 0             |
| Total |                   | 60            |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning<br>Outcomes                                                                  | Code of PLOs<br>aligned with the<br>program | Teaching Strategies                                                       | Assessment<br>Methods                                                                   |
|------|----------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1.0  | Knowledge and understand                                                                     | ing                                         |                                                                           |                                                                                         |
| 1.1  | Describe the concepts and principles in introductory study of physics.                       |                                             | <ul><li>Lectures.</li><li>Tutorials.</li><li>Class discussions.</li></ul> | <ul><li>Exams.</li><li>Participation.</li><li>Discussions.</li></ul>                    |
| 1.2  | Recognize the underlying physical principles behind various daily life phenomena.            |                                             | <ul><li>Lectures.</li><li>Tutorials.</li><li>Class discussions.</li></ul> | <ul><li>Exams.</li><li>Homeworks.</li><li>Quizzes.</li></ul>                            |
| 1.3  | Describe physical phenomena using proper physical laws and theories in mechanics.            |                                             | <ul><li>Lectures.</li><li>Class discussions.</li><li>Tutorials.</li></ul> | <ul><li>Participation.</li><li>Exams.</li><li>Discussions.</li><li>Homeworks.</li></ul> |
| 1.4  | Define simple mathematical techniques for quantitative analysis in solving physics problems. |                                             | <ul><li>Lectures.</li><li>Class discussions.</li><li>Tutorials.</li></ul> | <ul><li>Exams.</li><li>Participation.</li><li>Discussions.</li></ul>                    |
| 2.0  | Skills                                                                                       |                                             |                                                                           |                                                                                         |
| 2.1  | Explain and summarize the basic knowledge gained from studying mechanics.                    |                                             | <ul><li>Lectures.</li><li>Class discussions.</li><li>Tutorials.</li></ul> | <ul><li>Exams.</li><li>Discussions.</li><li>Participation.</li></ul>                    |
| 2.2  | Develop the students ability to solve and                                                    |                                             | <ul> <li>Problem classes and group tutorial.</li> </ul>                   | <ul><li>Exams.</li><li>Discussions.</li></ul>                                           |

4

| Code | Course Learning<br>Outcomes                                                                                                   | Code of PLOs<br>aligned with the<br>program | Teaching Strategies                                                                                                                                                                                                          | Assessment<br>Methods                                                                                                                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | analyze problems in physics related the topics covered by the course.                                                         |                                             | <ul> <li>Homework<br/>assignments as well<br/>as problems<br/>solutions.</li> </ul>                                                                                                                                          | Homework.                                                                                                                                                       |
| 2.3  | Communicate in a clear and concise manner orally, and using IT for acquiring and analyzing information.                       |                                             | <ul> <li>Lectures.</li> <li>Class discussions.</li> <li>Tutorials.</li> <li>Encourage students to use electronic mail and internal network for submitting homework and assignments.</li> <li>Use digital library.</li> </ul> | <ul> <li>Exams.</li> <li>Participation<br/>and activities<br/>of students in<br/>the course<br/>community<br/>and<br/>blackboard.</li> <li>Homework.</li> </ul> |
| 3.0  | Values, autonomy, and resp                                                                                                    | onsibility.                                 |                                                                                                                                                                                                                              |                                                                                                                                                                 |
| 3.1  | Show the collaboration and inter-professionalism in class discussions or team works, as well as solve problems independently. |                                             | <ul><li>Small team tasks</li><li>Open discussion at classroom.</li><li>Office hours.</li></ul>                                                                                                                               | <ul><li>Participation.</li><li>Homework.</li><li>Miniproject(s).</li></ul>                                                                                      |

#### **C.** Course Content

| No | List of Topics                                                                                                                                                                                                                                                     | Contact Hours |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. | <b>Vectors:</b> Coordinate Systems in 3 dimensions, Vectors and scalar quantities, Properties of vectors, Components of a vector and unit vectors.                                                                                                                 | 6             |
| 2. | <b>Motion in 1 Dimension:</b> Position and displacement, Average velocity, Instantaneous velocity, Acceleration and instantaneous acceleration, One-dimensional motion with constant acceleration.                                                                 | 6             |
| 3. | <b>Motion in 2 and 3 Dimensions:</b> The position, Velocity and acceleration vectors in 3 dimensions, Projectile Motion.                                                                                                                                           | 6             |
| 4. | <b>Force and Motion:</b> Newton's first Law, Force and mass, Newton's second Law, Newton's third Law, Applications of Newton's Laws, Frictional force, Circular motion with uniform acceleration.                                                                  | 8             |
| 5. | <b>Kinetic Energy and Work:</b> Work done by a constant force, Scalar product, Kinetic energy and work kinetic energy theorem, Work done by a spring force (a variable force).                                                                                     | 6             |
| 6. | <b>Potential Energy:</b> Potential energy of a system, Conservative and nonconservative forces, Conservation of mechanical energy, Changes in mechanical energy for nonconservative forces, Relationship between conservative forces and potential energy.         | 6             |
| 7. | <b>Center of Mass and Linear Momentum:</b> The Center of mass, Motion of a system of particles, Linear momentum and impulse, Conservation of linear momentum, Collisions in one dimension (Inelastic, Elastic). Collisions in two dimensions (Inelastic, Elastic). | 8             |

| 8. | inertia, Torque, Relationship between torque and angular acceleration. Work, Power, and Energy in Rotational Motion. Rolling Motion of a Rigid Object. Rolling, Torque and angular momentum; The vector product and torque, Angular momentum, Angular momentum of a rotating rigid object. Conservation of angular momentum.  Equilibrium and Elasticity: The conditions for equilibrium, The center of | 10 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8. | Work, Power, and Energy in Rotational Motion. Rolling Motion of a Rigid Object. Rolling, Torque and angular momentum; The vector product and                                                                                                                                                                                                                                                            | 10 |

## **D. Students Assessment Activities**

| No | Assessment Activities *                                           | Assessment<br>timing<br>(in week no) | Percentage of Total Assessment Score |
|----|-------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| 1. | Class Activities (class quizzes, homework, solving problems, etc) | weekly                               | 20 %                                 |
| 2. | Midterm Exam 1                                                    | 6 <sup>th</sup> week                 | 20 %                                 |
| 3. | Midterm Exam 2                                                    | 12 <sup>th</sup> week                | 20 %                                 |
| 4. | Final Exam                                                        | 16 <sup>th</sup> week                | 40 %                                 |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

#### **E. Learning Resources and Facilities**

#### 1. References and Learning Resources

| Essential References     | <ul> <li>Serway R.A. and Jewett J.W., Physics for Scientists         and Engineers with Modern Physics, 9th Edition,         Brooks/Cole, Belmont, CA, USA (2014).</li> </ul> |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References    | - Halliday D. and Resnick R., Physics, 9thEdition, John Wiley and sons (2011).                                                                                                |
| Electronic Materials     | https://units.imamu.edu.sa/colleges/en/science/Pages/default .aspx                                                                                                            |
| Other Learning Materials |                                                                                                                                                                               |

# 2. Required Facilities and equipment

| Items                                                                           | Resources                |
|---------------------------------------------------------------------------------|--------------------------|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | - Classrooms.<br>- Labs. |



| Items                                                      | Resources                                               |
|------------------------------------------------------------|---------------------------------------------------------|
| Technology equipment (projector, smart board, software)    | - Classroom equipped with a whiteboard and a projector. |
| Other equipment (depending on the nature of the specialty) |                                                         |

# F. Assessment of Course Quality

| Assessment Areas/Issues                     | Assessor                           | Assessment Methods                                                                                                         |
|---------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Effectiveness of teaching                   | - Students<br>- Second examiner    | - Indirect (The students complete the evaluation forms at the end of term. Final exam is evaluated by the second examiner) |
| Effectiveness of<br>Students assessment     | - Instructors                      | - Direct (exams, HW, project,)                                                                                             |
| Quality of learning resources               | - Faculty<br>- Students            | - Indirect (surveys)                                                                                                       |
| The extent to which CLOs have been achieved | - Instructors<br>- Program Leaders | - Direct (excel sheet)                                                                                                     |
| Other                                       |                                    |                                                                                                                            |

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

## **G. Specification Approval**

| COUNCIL /COMMITTEE | Quality Unit-Physics Department |
|--------------------|---------------------------------|
| REFERENCE NO.      | Department council No. 06       |
| DATE               | 26/09/2024                      |

