





## **Course Specification**

- (Bachelor)

Course Title: General Physics Lab (2)

Course Code: PHY 1120

**Program: B. Sc. in Engineering** 

**Department: Physics** 

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 1-Template 2024

Last Revision Date: 26/09/2024





## **Table of Contents**

| A. General information about the course:                                       | 3 |
|--------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 |
| C. Course Content                                                              | 5 |
| D. Students Assessment Activities                                              | 6 |
| E. Learning Resources and Facilities                                           | 6 |
| F. Assessment of Course Quality                                                | 7 |
| G. Specification Approval                                                      | 7 |





| A. General information a                                                                                                       | A. General information about the course:                |                          |                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|-----------------------|--|--|
| 1. Course Identification                                                                                                       |                                                         |                          |                       |  |  |
| 1. Credit hours: (1)                                                                                                           |                                                         |                          |                       |  |  |
|                                                                                                                                |                                                         |                          |                       |  |  |
| 2. Course type                                                                                                                 |                                                         |                          |                       |  |  |
| A. □University □ C                                                                                                             | College 🗆 Depart                                        | ment $\square$ Track     | ⊠ Others              |  |  |
| B.   Required                                                                                                                  |                                                         | □Elective                |                       |  |  |
| 3. Level/year at which t                                                                                                       | his course is offered:                                  | (Level 2/ Year 1)        |                       |  |  |
| 4. Course General Descr                                                                                                        | ription:                                                |                          |                       |  |  |
| This course focuses on basic short lecture covering the pro<br>Attendance and participation a<br>must submit their own lab rep | ocedures, key concepts, fo<br>are required. Experiments | rmulas, and instructions | s for the experiment. |  |  |
| 5. Pre-requirements for                                                                                                        | this course (if any):                                   |                          |                       |  |  |
| PHY 1117 and PHY 1119                                                                                                          |                                                         |                          |                       |  |  |
| 6. Co-requisites for this course (if any):                                                                                     |                                                         |                          |                       |  |  |
| PHY 1118                                                                                                                       |                                                         |                          |                       |  |  |
|                                                                                                                                |                                                         |                          |                       |  |  |
|                                                                                                                                |                                                         |                          |                       |  |  |

## 7. Course Main Objective(s):

- Observe and analyze physical data relevant to some of the experiments in Mechanics.
- Provide students with a thorough understanding of the basic concepts of physics and the
  methods scientists use to explore natural phenomena, including observation, hypothesis
  development, measurement and data collection, experimentation, evaluation of evidence, and
  employment of mathematical analysis.
- Develop the student's mathematical ability to manipulate formulae and derive correct numerical solutions that can be measured in the real world.
- Instruct students in the competent use of laboratory equipment to collect and record data, apply relevant mathematical models and perform required computations, and present the derived results as an application of a measured observation of the physical world.

#### 2. Teaching mode (mark all that apply)

| No | Mode of Instruction                       | Contact Hours | Percentage |
|----|-------------------------------------------|---------------|------------|
| 1  | Traditional classroom                     | 30            | 100%       |
| 2  | E-learning                                |               |            |
|    | Hybrid                                    |               |            |
| 3  | <ul> <li>Traditional classroom</li> </ul> |               |            |
|    | <ul><li>E-learning</li></ul>              |               |            |





| No | Mode of Instruction | Contact Hours | Percentage |
|----|---------------------|---------------|------------|
| 4  | Distance learning   |               |            |

## **3. Contact Hours** (based on the academic semester)

| No    | Activity          | Contact Hours |
|-------|-------------------|---------------|
| 1.    | Lectures          | 0             |
| 2.    | Laboratory/Studio | 30            |
| 3.    | Field             | 0             |
| 4.    | Tutorial          | 0             |
| 5.    | Others (specify)  | 0             |
| Total |                   | 30            |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning<br>Outcomes                                                                                            | Code of PLOs<br>aligned with the<br>program | Teaching Strategies                                                       | Assessment<br>Methods                                                                  |
|------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1.0  | Knowledge and understandi                                                                                              | ing                                         |                                                                           |                                                                                        |
| 1.1  | Describe the theoretical bases of Ohm's law experiments.                                                               |                                             | <ul><li>Lectures.</li><li>Tutorials.</li><li>Class discussions.</li></ul> | <ul><li>Exams.</li><li>Participation.</li><li>Discussions.</li></ul>                   |
| 1.2  | Describe the theoretical bases of Coulombs law using capacitors characteristics experiments.                           |                                             | <ul><li>Lectures.</li><li>Tutorials.</li><li>Class discussions.</li></ul> | <ul><li>Exams.</li><li>Homework.</li><li>Quizzes.</li></ul>                            |
| 1.3  | Describe the theoretical bases of magnetic field laws using inductors characteristics experiments.                     |                                             | <ul><li>Lectures.</li><li>Class discussions.</li><li>Tutorials.</li></ul> | <ul><li>Participation.</li><li>Exams.</li><li>Discussions.</li><li>Homework.</li></ul> |
| 1.4  | Describe the theoretical bases of resistor-inductor-capacitor circuits and associated electrical behavior experiments. |                                             | <ul><li>Lectures.</li><li>Tutorials.</li><li>Class discussions.</li></ul> | <ul><li>Exams.</li><li>Participation.</li><li>Discussions.</li></ul>                   |
| 2.0  | Skills                                                                                                                 |                                             |                                                                           |                                                                                        |
| 2.1  | Analyze experiments according to the plan besides the learning from lab lecture.                                       |                                             | <ul><li>Lectures.</li><li>Class discussions.</li><li>Tutorials.</li></ul> | <ul><li>Exams.</li><li>Discussions.</li><li>Participation.</li></ul>                   |



| Code | Course Learning<br>Outcomes                                                                                                   | Code of PLOs<br>aligned with the<br>program | Teaching Strategies                                                                                                                                                                                                          | Assessment<br>Methods                                                                                                                                                            |
|------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.2  | Explain and use information from the output of experiment to draw conclusions.                                                |                                             | <ul> <li>Problem classes and group tutorial.</li> <li>Homework assignments as well as problems solutions.</li> </ul>                                                                                                         | <ul><li>Exams.</li><li>Discussions.</li><li>Homework.</li></ul>                                                                                                                  |
| 2.3  | Summarize conclusions and write reports.                                                                                      |                                             | <ul> <li>Lectures.</li> <li>Class discussions.</li> <li>Tutorials.</li> <li>Encourage students to use electronic mail and internal network for submitting homework and assignments.</li> <li>Use digital library.</li> </ul> | <ul> <li>Exams.</li> <li>Participation<br/>and activities of<br/>students in the<br/>course<br/>community and<br/>blackboard.</li> <li>Homework.</li> </ul>                      |
| 2.4  | Communicate in a clear and concise manner orally, paper and using IT for acquiring and analyzing information.                 |                                             | <ul> <li>Lectures.</li> <li>Class discussions.</li> <li>Encourage students to use electronic mail and internal network for submitting homework and assignments.</li> <li>Use digital library.</li> </ul>                     | <ul> <li>Exams.</li> <li>Participation<br/>and activities of<br/>students in the<br/>course<br/>community and<br/>blackboard.</li> <li>Feedback and<br/>explanations.</li> </ul> |
| 3.0  | Values, autonomy, and resp                                                                                                    | onsibility                                  |                                                                                                                                                                                                                              |                                                                                                                                                                                  |
| 3.1  | Show the collaboration and inter-professionalism in class discussions or team works, as well as solve problems independently. |                                             | <ul><li>Small team tasks</li><li>Open discussion at classroom.</li><li>Office hours.</li></ul>                                                                                                                               | <ul><li>Participation.</li><li>Homework.</li><li>Mini-project(s).</li></ul>                                                                                                      |

## **C. Course Content**

| No | List of Topics                                                                                               | Contact Hours |
|----|--------------------------------------------------------------------------------------------------------------|---------------|
| 1. | <b>Experiment 1:</b> Determining the capacitance of a plate capacitor.                                       | 3             |
| 2. | <b>Experiment 2</b> : Determining the dielectric constant of a dielectric by using plate capacitor.          | 3             |
| 3. | <b>Experiment 3</b> : Parallel and Series Connection of Capacitors.                                          | 3             |
| 4. | <b>Experiment 4</b> : Charging and discharging a Capacitor (The RC circuit).                                 |               |
| 5. | <b>Experiment 5</b> : Measuring the Magnetic Field for a Straight Conductor and on Circular Conductor Loops. |               |
| 6. | Experiment 6: The Magnetic Field of an Air Coil.                                                             |               |
| 7. | <b>Experiment 7</b> : Electromagnetic Induction (Induction in a moving conductor loop).                      | 3             |

| 8.  | Experiment 8: RL circuit.                                                                    | 3  |
|-----|----------------------------------------------------------------------------------------------|----|
| 9.  | <b>Experiment 9</b> : Alternating Current with Coil and Ohmic Resistors.                     | 3  |
| 10. | <b>Experiment 10</b> : Determining the Capacitive Reactance of a Capacitor in an AC Circuit. | 3  |
|     | Total                                                                                        | 30 |

#### **D. Students Assessment Activities**

| No | Assessment Activities *                                           | Assessment<br>timing<br>(in week no) | Percentage of Total Assessment Score |
|----|-------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| 1. | Class Activities (class quizzes, homework, solving problems, etc) | weekly                               | 35 %                                 |
| 2. | Midterm Exam 1                                                    | 6 <sup>th</sup> week                 | 7.5 %                                |
| 3. | Midterm Exam 2                                                    | 12 <sup>th</sup> week                | 7.5 %                                |
| 4. | Final Exam                                                        | 15 <sup>th</sup> week                | 50 %                                 |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

## **E. Learning Resources and Facilities**

## 1. References and Learning Resources

| Essential References     |                                                                                                                                                                   |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References    |                                                                                                                                                                   |
| Electronic Materials     | https://units.imamu.edu.sa/colleges/en/science/Pages/default .aspx                                                                                                |
| Other Learning Materials | <ul> <li>Laboratory Manual supplied by the Department of Physics.</li> <li>Laboratory Manual is available at the website of the Department of Physics.</li> </ul> |

## 2. Required Facilities and equipment

| Items                                                                           | Resources                                               |
|---------------------------------------------------------------------------------|---------------------------------------------------------|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | - Classrooms.<br>- Labs.                                |
| Technology equipment (projector, smart board, software)                         | - Classroom equipped with a whiteboard and a projector. |
| Other equipment (depending on the nature of the specialty)                      |                                                         |





## F. Assessment of Course Quality

| Assessment Areas/Issues                     | Assessor                       | Assessment Methods                                                                                                       |
|---------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Effectiveness of teaching                   | Students<br>Second examiner    | Indirect (The students complete the evaluation forms at the end of term. Final exam is evaluated by the second examiner) |
| Effectiveness of<br>Students assessment     | Instructors                    | Direct (exams, HW, project,)                                                                                             |
| Quality of learning resources               | Faculty<br>Students            | indirect (surveys)                                                                                                       |
| The extent to which CLOs have been achieved | Instructors<br>Program Leaders | Direct (excel sheet)                                                                                                     |
| Other                                       |                                |                                                                                                                          |

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

## **G. Specification Approval**

| COUNCIL /COMMITTEE | Quality Unit-Physics Department |
|--------------------|---------------------------------|
| REFERENCE NO.      | Department council No. 06       |
| DATE               | 26/09/2024                      |

