

Course Specification

(Postgraduate Programs)

Course Title: Advanced Solid-State Physics

Course Code: PHY 6161

Program: Master of Science in Physics

Department: Physics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 3

Last Revision Date: 26/09/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	5
D. Students Assessment Activities:	6
E. Learning Resources and Facilities:	7
F. Assessment of Course Quality:	7
G. Specification Approval Data:	8

A. General information about the course:

-	_			0.01							
1	. C		rc		n	tı	tı	(2	Ť١	n	
_		 ш		ıu						-	٠.

1. C	1. Credit hours: 4							
2. C	2. Course type							
A. B.	☐ University 図 Required	☐ College	□ E	t □ Tra	ack			
3. L	evel/year at wh	ich this course	is offered: Le	el 2/Yea	ar 1			
4. C	ourse General [Description:						
The aim of this course is to give an extended knowledge of the principles and techniques of solid-state physics. It is at the level of first-year graduate students and will deepen the understanding already gained through the introduction to solid-state physics. Topics covered include the Drude and Sommerfeld models of metal, the determination of crystal structures by X-Ray diffraction and electron levels in a periodic potential. Fundamental theories are introduced and then extended to show the irrelevance to important applications in current-day technology, industry, and research. 5. Pre-requirements for this course (if any): None								
6. Pre-requirements for this course (if any): None								
Г7. C	7. Course Main Objective(s):							

At the end of this course, students will be able to:

- Demonstrate knowledge of fundamental concepts in advanced solid-state physics.
- Illustrate the concepts of free electron gas model, spin-spin interaction, disorder in solids and their applications and the contact phenomena.
- Solve problems in several topics in advanced solid-state physics.
- 2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	75	100%
2	E-learning		
3	Hybrid		

No	Mode of Instruction	Contact Hours	Percentage
	Traditional classroomE-learning		
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	30
5.	Others (specify)	0
	Total	75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Recognize different aspects of advanced solid state physics and solve related problems.	K1,K2	Lectures.Tutorials.Class discussions.	Exams.Participation.Discussions.
1.2	Describe and perform simple calculations in different electron model by using Hartree- Fock theory and the spin-spin interaction model concept and its importance in physics.	K1,K3	Lectures.Tutorials.Class discussions.	Exams.Homework.Quizzes.
1.3	Interpret the basic concepts of superconductivity and their applications.	K1, K2	Lectures.Class discussions.Tutorials.	Participation.Exams.Discussions.Homework.

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
2.0	Skills			
2.1	Explain and summarize the basic knowledge gained from studying solid-state physics course.	S1, S2	Lectures.Class discussions.Tutorials.	Exams.Discussions.Participation.
2.2	Develop the students ability to solve and analyze problems in physics related the topics covered by the course.	S2, S3	 Problem classes and group tutorial. Homework assignments as well as problems solutions. 	Exams.Discussions.Homework.
2.3	Communicate in a clear and concise manner orally, and using IT for acquiring and analyzing information.	S4	 Lectures. Class discussions. Tutorials. Encourage students to use electronic mail and internal network for submitting homework and assignments. Use digital library. 	 Exams. Participation and activities of students in the course community and blackboard. Homework.
3.0	Values, autonomy, and responsib	oility		
3.1	Show the collaboration and inter-professionalism in class discussions or team works, as well as solve problems independently.	V1, V2, V3	Small team tasksOpen discussion at classroom.Office hours.	ParticipationHomework.Mini-project(s).

C. Course Content:

No	List of Topics	Contact Hours
1.	The Drude's Theory of Metals: Basic assumptions of the model, Collision or relaxation times, DC electrical conductivity, Hall effect and magnetoresistance, AC electrical conductivity, Dielectric function and plasma resonance, Thermal conductivity, Thermoelectric effects.	10

	Total	75
11.	Cohesive Energy: The noble gases, Ionic crystals, Cohesion in covalent crystals, Cohesion in metals.	4
10.	Classification of Solids: The spatial distribution of valence electrons, Covalent, molecular, and ionic crystals, The alkali halides, Ionic radii, metals.	4
9.	Beyond the Independent Electron Approximation: The Hartree equations, The Hartree-Foch equations, Correlation, The dielectric function, Fermi liquid theory.	4
8.	Electrons in a Weak Periodic Potential: Perturbation theory and weak periodic potentials, Energylevels near a single Bragg plane, Illustration of extended-, reduced-, and repeated-zone schemes in one dimension, Fermi surface and Brillouin zones, Geometrical structure factor, spin-orbit coupling.	4
7.	Electron Levels in a Periodic Potential: The periodic potential and Bloch's theorem, Born-von Karman boundary condition, A second proof of Bloch's theorem, Crystal momentum, band index, and velocity, The Fermi surface.	5
6.	Classification of Bravais Lattice and Crystal Structures: Symmetry operations and the classification of Bravais lattices, The seven crystal systems and fourteen Bravais lattices, Crystallographic point groups and space groups, Schoenflies and international notations, Examples from elements.	8
5.	Determination of Crystal Structures by X-Ray Diffraction: Formulation of Bragg and von Laue, The Laue condition and Ewald's construction, Experimental methods, Geometrical structure factor, Atomic form factor.	8
4.	The Reciprocal Lattice: Definitions and examples, First Brillouin zone, Lattice planes and Miller indices.	8
3.	Crystal Lattice: Bravais Lattice and primitive vectors, Simple, bodycentered, and face-centered cubic lattices, Primitive unit cell, Wigner-Seitz cell, and conventional cell, Crystal structures and lattices with bases, Hexagonal close-packed and diamond structures, Sodium chloride, Cesium chloride, and Zincblende structures.	10
2.	The Sommerfeld Theory of Metals: Fermi-Dirac distribution, Free electrons, Density of allowed wave vectors, Fermi momentum, energy, and temperature, Ground-state energy and bulk modulus, Thermal properties of a free electron gas, Sommerfeld theory of conduction, Wiedemann-Franz law.	10

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Class Activities (class quizzes, homework, solving problems, etc)	weekly	20 %

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
2.	Midterm Exam 1	6 th week	20 %
3.	Midterm Exam 2	12 th week	20 %
4.	Final Exam	16 th week	40 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	N.W. Ashcroft, N.D. Mermin, Solid State Physics, Harcourt College Publishers, 1976.
Supportive References	P. Phillips, Advanced Solid State Physics, 2nd Edition, Cambridge University Press, 2012C. Kittel, Introduction to Solid State Physics, 8th Edition, John Wiley and Sons, 2005L. M. Sander, Advanced Condensed Matter Physics, Cambridge University Press, 2009.
Electronic Materials	https://units.imamu.edu.sa/colleges/en/science/Pages/default .aspx
Other Learning Materials	Multimedia associated with the textbook and the relevant websites.

2. Educational and Research Facilities and Equipment Required:

Items	Resources	
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	ClassroomsXRD research Lab	
Technology equipment (Projector, smart board, software)	- Classroom equipped with a whiteboard and a projector.	
Other equipment (Depending on the nature of the specialty)		

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students.Second examiner	Indirect (The student will complete evaluation forms at the end of semester. Final exam is evaluated by the second examiner)

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of students' assessment	- Instructors	Direct (exams, HW, project,)
Quality of learning resources	FacultyStudents	Indirect (surveys)
The extent to which CLOs have been achieved	InstructorsProgram Leaders	Direct (excel sheet)
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Quality Unit-Physics Department
REFERENCE NO.	Department council No. 6
DATE	26/09/2024

