

Course Specification

— (Postgraduate Programs)

Course Title: Physics of Semiconductors and Devices

Course Code: PHY 6263

Program: Master of Science in Physics

Department: Physics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 3

Last Revision Date: 26/09/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	5
D. Students Assessment Activities:	6
E. Learning Resources and Facilities:	6
F. Assessment of Course Quality:	7
G. Specification Approval Data:	7

A. General information about the course:

-			4	^•	•
1	COLLEGA		lontii	ことつま	'IOD'
4.0	Course	ıu	ICIILII	ıcaı	JUII.

1. C	redit hours: 3				
2. C	ourse type				
A.	☐ University	☐ College	□ T □ T	Track Track	
В.	☐ Required		⊠ Elective		
3. L	evel/year at wh	ich this course i	s offered: Level 3 or	· 4/Year 2	
4. C	ourse General D	escription:			
This course provides a rigorous foundation of fundamental concepts of semiconductors physics. This course will include: Energy Bands in Semiconductors, Electronic Effects of Doping Impurities, Lattice Vibrations, Charge Carrier Transport Properties, Optical Properties, p-n Junctions, Bipolar Junction Transistor, Metal-Semiconductor Devices.					
5. P	re-requirement	s for this course	(if any): None		
6. Pre-requirements for this course (if any): None					
7. C	ourse Main Obj	ective(s):			
At t	he end of this co Become famil		ill be able to: ductor materials.		

nanotechnology.2. Teaching Mode: (mark all that apply)

• Solve problems in semiconductors physics.

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning		
	Hybrid		
3	 Traditional classroom 		
	E-learning		
4	Distance learning		

• Demonstrate knowledge of fundamental concepts of semiconductors physics.

• Learn about the most important applications of semiconductors in

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	30
5.	Others (specify)	0
	Total	60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Interpret the electronic band structures, band gaps for the technologically important semiconductors, also describe drift, diffusion and scattering under various temperature and impurity concentrations.	K1,K2	Lectures.Tutorials.Class discussions.	Exams.Participation.Discussions.
1.2	Describe the concentrations of electron and holes with a given temperature in terms of Fermi energy.	K1,K3	Lectures.Tutorials.Class discussions.	Exams.Homework.Quizzes.
1.3	Discuss the electric transport properties and the optical properties of the bulk materials.	K2, K3	Lectures.Class discussions.Tutorials.	Participation.Exams.Discussions.Homework.
2.0	Skills			
2.1	Explain and summarize the basic knowledge gained from studying the course of physics of semiconductors and devices	S1, S2	Lectures.Class discussions.Tutorials.	Exams.Discussions.Participation.
2.2	Develop the students ability to solve and analyze problems in	S2, S3	 Problem classes and group tutorial. 	Exams.Discussions.Homework.

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
	physics related the topics covered by the course.		 Homework assignments as well as problems solutions. 	
2.3	Communicate in a clear and concise manner orally, and using IT for acquiring and analyzing information.	\$3,\$4	 Lectures. Class discussions. Tutorials. Encourage students to use electronic mail and internal network for submitting homework and assignments. Use digital library. 	 Exams. Participation and activities of students in the course community and blackboard. Homework.
3.0	Values, autonomy, and responsibility			
3.1	Show the collaboration and inter-professionalism in class discussions or team works, as well as solve problems independently.	V1, V2, V3	Small team tasksOpen discussion at classroom.Office hours.	ParticipationHomework.Mini-project(s).

C. Course Content:

No	List of Topics	Contact Hours
1.	Energy Bands in Semiconductors : Electronic structure, Electrons in periodic structures, Semiconductor band structure, Pseudo-potential and kp method, Doping in semiconductors.	1 2
2.	Electronic Effects of Doping Impurities : Effective mass theory, Donor impurities in Si and Ge, Donor impurities in III-V semiconductors, Acceptor impurities.	12
3.	Lattice Vibrations : Equations of motion, Phonon dispersion curves, Models for calculating phonon dispersion curves, Electron-Phonon interactions.	12
4.	Charge Carrier Transport Properties : Quasi-classical approach, Carrier mobility for a non degenerate electron gas, Scattering mechanisms, High field transport and hot carrier effects.	12

edges, Excitons, Emission spectroscopies, Light scattering spectroscopies.	5.	Optical Properties : Kramers-Kronig relations, Dielectric function, Joint density of states and van Hove singularities, Direct and indirect absorption	12
Total 60			60

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Class Activities (class quizzes, homework, solving problems, etc)	weekly	20 %
2.	Midterm Exam 1	6 th week	20 %
3.	Midterm Exam 2	12th week	20 %
4.	Final Exam	16 th week	40 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	S.M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, 1969.
Supportive References	 - W.C.J. Magnus, W.J. Schoenmaker, Quantum Transport in Sub-Micron Devices-A theoretical Introduction, Springer, 2002. - J. Davies, The Physics of Low-Dimensional Semiconductors: An Introduction, Cambridge University Press, 1998.
Electronic Materials	https://units.imamu.edu.sa/colleges/en/science/Pages/default.aspx
Other Learning Materials	Multimedia associated with the textbook and the relevant websites.

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	ClassroomsXRD and optical research Labs
Technology equipment (Projector, smart board, software)	- Classroom equipped with a whiteboard and a projector.
Other equipment (Depending on the nature of the specialty)	

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students.Second examiner	Indirect (The student will complete evaluation forms at the end of semester. Final exam is evaluated by the second examiner)
Effectiveness of students' assessment	- Instructors	Direct (exams, HW, project,)
Quality of learning resources	FacultyStudents	Indirect (surveys)
The extent to which CLOs have been achieved	InstructorsProgram Leaders	Direct (excel sheet)
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Quality Unit-Physics Department
REFERENCE NO.	Department council No. 6
DATE	26/09/2024

