

Algal Biomass Extract as Mediator for Copper Oxide Nanoparticle Synthesis: Applications in			
Control of Fungal, Bacterial Growth, and Photocatalytic Degradations of Dyes			
Authors	Sulaiman A. Alsalamah, ^a Mohammed Ibrahim Alghonaim, ^a Abeer M.		
	Mohammad, ^b and Tarek M. Abdel Ghany		
Publication Year		2023	https://doi.org/10.15376/biores.18.4.7474-7489
Grant Number		umber	IMSIU-RP23038
Abstract: This study explores the use of algae biomass to synthesize copper oxide			
nanoparticles (CuONPs) and their applications. High-performance liquid			
chromatography identified daidzein and ellagic acid as key components in the algal			
biomass. The biomass extract efficiently reduced CuONPs at temperatures up to			
50°C. Transmission electron microscopy revealed CuONPs with sizes between 5 and			
17 nm. The nanoparticles showed significant antifungal activity, with inhibition zones			
ranging from 1.00 to 2.42 cm against various fungi, and antibacterial activity with			
inhibition zones of 22 to 26 mm against several bacteria. CuONPs also effectively			
degraded methyl orange and methyl green dyes, indicating their potential for			
controlling microbial growth and treating dyes.			

