

Stress–Strength Reliability Analysis for Different Distributions Using Progressive			
Type-II Censoring with Binomial Removal			
Authors	Ibrahim Elbatal, Amal S. Hassan, L. S. Diab, Anis Ben Ghorbal, Mohammed		
	Elgarhy, Ahmed R. El-Saeed		
Publication Year		2023	https://doi.org/10.3390/axioms12111054
Grant Number		umber	IMSIU-RP23009
Abstract: This study focuses on stress-strength reliability, denoted as $\delta = P(W < V)$,			
where V and W represent strength and stress random variables, respectively, and δ is			
the reliability parameter. Using Type-II progressive censoring with binomial removal,			
the study examines the inference of δ for a system with V (strength) and W (stress)			
assumed to follow the Burr XII and Burr III distributions, respectively, with a common			
shape parameter. The maximum likelihood estimator (MLE) of δ is derived, along with			
the Bayes estimator using independent gamma priors. The Bayes estimates under			
squared error and linear exponential loss functions are computed via the Metropolis-			
Hastings method. Simulations compare the estimators using two metrics—average of			
estimates and root mean squared errors. The method is also applied to real-world data			
on breakdown times of insulating fluid under varying voltages.			

