

## الإنتاج العلمى لمركز بحوث العلوم الصحية



| using Red-Emissive carbon dots |                                                                                            |
|--------------------------------|--------------------------------------------------------------------------------------------|
| Authors                        | Ali M Alaseem, Khalid Alhazzani, Ahmed Z Alanazi, Saud M                                   |
|                                | Alsanad, Osama A Alkhamees, Glowi Alasiri, Mohamed M El-Wekil,<br>Al-Montaser Bellah H Ali |
| Publication Year               | 2024                                                                                       |
| Grant Number                   | IMSIU-RG23083                                                                              |
| DOI link                       | https://doi.org/10.1016/j.microc.2024.110645                                               |

**Abstract:** A new ratiometric fluorescence strategy for sensitive and selective detection of cobalt ions (Co<sup>2+</sup>) and topotecan (TOP) is proposed. The dual-probe system consists of redemissive nitrogen and sulphur doped carbon dots (R-NS@CDs) and TOP. For Co<sup>2+</sup> detection, the fluorescence of R-NS@CDs at 680 nm is enhanced upon addition of Co<sup>2+</sup>, while complexed TOP emission peak at 545 nm remains constant. This enables ratiometric detection of Co<sup>2+</sup> over a range of 5.0-160.0 ng mL<sup>-1</sup>. The mechanism of R-NS@CDs fluorescence enhancement by Co<sup>2+</sup> is elucidated using FTIR, fluorescence spectroscopy, zeta potential measurements, and TEM imaging. For the detection of TOP, a ratiometric probe system comprising R-NS@CDs and Co2+ was utilized. TOP forms a complex with Co2+ bounded to RNS@CDs, quenching the R-NS@CDs-Co<sup>2+</sup> fluorescence and simultaneously the native TOP fluorescence is enhanced. This allows ratiometric quantification of TOP from 1.090.0 ng mL<sup>-1</sup>. The method provides high selectivity and low detection limits of

1.51 ng mL<sup>-1</sup> for Co<sup>2+</sup> and 0.37 ng mL<sup>-1</sup> for TOP. Practical applicability is demonstrated through selective detection of Co<sup>2+</sup> in environmental water samples and TOP in real plasma samples. The built-in self-calibration enabled by dual analyte modulation of R-NS@CDs makes this a simple and powerful analytical approach.

