

AuthorsKarim Choubani, ORCID, Mohammed A. Almeshaal, Moncef Barghouti and Mohamed Ben Rabha, ORCIDPublication Year2023Grant NumberIMSIU-RG23098
Publication Year 2023
Grant Number IMSIU-RG23098
DOI link <u>10.3390/coatings13111901</u>
Abstract: The demand for cooling continues to increase in line with environmental changes
and a greater desire for human comfort. In north Africa and middle eastern countries, and
particularly in Tunisia, cooling constitutes a big problem as it is recommended for human and
animal breeding. This study aimed to analyze the performance and suitability of an
evaporative cooling system powered by solar energy and to assess the economic and
environmental impact under Tunisian weather conditions. Numerical modeling and
simulations were performed, revealing the effects of inlet air temperature and relative
humidity on system performances. An experimental study based on the construction of an
evaporative cooling prototype formed by environmentally friendly and locally available
components was also performed. This study showed the dependence of the process
performances on the humidity and temperature of the ambient air. The obtained results
revealed that the efficiency of the evaporative cooler exceeds 90%, with maximum efficiency
being reached at a high wet-bulb depression, while minimum efficiency was observed when
the dry air has a high relative humidity and a low dry-bulb temperature. Experimental results
showed that, for input temperatures ranges between 36 and 47 °C and relative air humidity
between 15 and 50%, a direct humidifier produces air with a temperature range between 25
and 29 °C and humidity range between 55% and 85%. Thus, evaporative cooling is feasible
and suitable under Tunisian climate conditions during the hot season.

ه_خوجه

