

The Enhanced Adsorption Capacity of Ziziphus jujuba Stones Modified with Ortho-	
Phosphoric Acid for Organic Dye Removal: A Gaussian Process Regression Approach	
Authors	Abderraouf Guediri, Abdallah Bouguettoucha
	Hichem Tahraoui, Derradji Chebli, Jie Zhang, Abdeltif Amrane, Lotfi
	Khezami and Amin Aymen Assadi
Publication Year	2024
Grant Number	IMSIU-RP23013
DOI link	<u>10.3390/w16091208</u>
Abstract: Here, the chemical modification of Ziziphus jujuba stones (ZJS) treated with	
ortho-phosphoric acid (ZJS-H3PO4) is investigated to enhance its adsorption	
properties for organic dyes. The physicochemical properties of ZJS-H3PO4 reveal	
increased porosity (87.29%), slightly higher bulk density (0.034 g mL-1), and	
enhanced acidity (31.42 m eq g g–1) compared to untreated ZJS. XRF analysis	
confirms the successful incorporation of orthophosphoric acid during treatment due to	
a significant increase in phosphorus content. The maximum adsorption capacity of methylene blue on ZJS-H3PO4 is found to be 179.83 mg g-1, demonstrating its	
efficacy as a potential adsorbent for organic dyes. These findings suggest that	
modifying ZJS with orthophosphoric acid could be a promising strategy to enhance its	
adsorption performance in various environmental applications. Furthermore, Gaussian	
process regression (GPR) is employed to model MB adsorption by ZJS-H3PO4.	
Optimization of the GPR model involves evaluating different kernel functions and	
meticulously adjusting parameters to maximize its ability to capture complex	
relationships in the data. The obtained GPR model demonstrates remarkable	
performance with high correlation coefficients (R) and low root mean square errors	
(RMSEs) across all study phases. Model validation is performed through residual	
analysis, confirming its effectiveness and accuracy in predicting MB adsorption.	
Finally, a user-friendly interface is developed to facilitate the usage of the GPR model	
in future applications, representing a significant advancement in environmental	
process modeling and ecosystem management.	

