

Mathematical Modeling and Optimization of Highly Efficient Nontoxic All-Inorganic	
CsSnGeI3-Based Perovskite Solar Cells with Oxide and Kesterite Charge	
Authors	Muhammad Noman, Ihsan Nawaz Khan, Affaq Qamar, Khalid AlSnaie,
	Hassan M Hussein Farh
Publication Year	2024
Grant Number	IMSIU-RG23022
DOI link	<u>10.1021/acsomega.3c07754</u>
Abstract: Despite exceptional optoelectronic properties and rapidly increasing efficiency of	
perovskite solar cells (PSCs), the issues of toxicity and device instability have hampered the	
commercialization of this renewable energy technology. Lead (Pb) being the main culprit	
creates major environmental risks and therefore must be replaced with a nontoxic material	
such as tin (Sn), germanium (Ge), etc. Moreover, replacing organic cations in the perovskite's	
ABX3 structure with inorganic ones like cesium (Cs) helps aid the stability issues. This study	
uses six different kesterite-based hole transport layers (HTLs) and three different metal oxide-	
based electron transport layers (ETLs) to numerically simulate and optimize all-inorganic	
CsSnGeI3 PSCs. Metal oxide ETLs are used in this study due to their large band gap, while	
kesterite HTLs are used due to their excellent conductive properties. All of the simulations are	
performed under standard testing conditions. A total of 18 novel planar (n-i-p) PSCs are	
modeled by the combination of various charge transport layers (CTLs), and the device	
optimization was done to enhance the power conversion efficiencies (PCEs) of the PSCs.	
Furthermore, the effect of CTLs on the energy band alignment, electric field, quantum	
efficiency, light absorption, and recombination rate is analyzed. Additionally, a detailed	
analysis of the impact of defect density (Nt), interface defects (ETL/Perv, Perv/HTL),	
temperature, and work function on the functionality of 18 different CsSnGel3-based PSCs is	
conducted. The simulation findings demonstrate that SnO2/CsSnGeI3/CNTS is the most	
efficient optimized PSC among all of the simulated structures, with a PCE of 27.33%, Jsc of	
28.04 mA/cm2, FF of 85%, and Voc of 1.14 V.	

ه-خوجه