

Designing Water Inter-Plant Networks of Single and Multiple Contaminants through	
Mathematical Programming	
Authors	Abeer M Shoaib, Amr A Atawia, Mohamed H Hassanean, Abdelrahman
	G Gadallah, Ahmed A Bhran
Publication Year	2024
Grant Number	IMSIU-RG 23020
DOI link	<u>10.3390/w15244315</u>
Abstract: Water is the meaning of life for humans, agricultural and industrial processes;	
controlling the distribution of water and wastewater between industrial processes is very vital	
for rationalizing water and preserving the environment. This paper addresses a mathematical	
approach to optimizing water inter-plant networks. The water network problem is formulated	
as a nonlinear program (NLP) that is solved by LINGO Software, version 14.0. A generalized	
two-step mathematical model is designed to be valid for solving networks containing large	
numbers of sources and sinks. The introduced model is proposed to be used for both single	
and multiple contaminant problems with up to six contaminants. Two mathematical models	
are presented to design water inter-plant networks efficiently. Firstly, the introduced model is	
solved by LINGO, in which the data given are applied; the obtained results are simultaneously	
sent to a second model (based on Excel Software 2019, v. 16.0), by which the obtained water	
networks are automatically drawn. The proposed approach has been applied in three case	
studies; the first case study contains five plants of single contaminants, the second case study	
contains three plants of single contaminants, and the third case study contains three plants of	
multiple contaminants. The results showed a noticeable reduction in the percentages of	
freshwater consumption in the investigated three case studies, which were 38.6, 4.74 and	
8.64%, respectively, and the wastewater discharge of the three case studies were decreased	
by 38.1, 4.61 and 8.65%, respectively.	

ه-خوجه

