

Triple band frequency tunable polarization insensitive metamaterial absorber for WLAN and 5G applications	
Authors Abdullah Al Mahfazur Rahman, Mohammad Tarigul Islam, Md	
Authors	
	Moniruzzaman, Norbahiah Misran, Fawzi Alorifi, Zaid Ahmed Shamsan,
	Khalid Almuhanna, Sharul Kamal Abdul Rahim, Md Shabiul Islam,
	Mohamed S Soliman
Publication Year	2024
Grant Number	IMSIU-RG23095
DOI link	10.1016/j.optmat.2023.114368
Abstract: A triple band metamaterial absorber (MMA) has been demonstrated in this	
paper that is developed on an FR4 substrate targeting WLAN and 5G frequencies.	
The resonating patch contains three modified concentric copper rings having overall	
unit cell dimensions of $0.16\lambda 0 \times 0.16\lambda 0 \times 0.0128\lambda 0$, where the wavelength, $\lambda 0$ is for	
2.4 GHz. The MMA exhibits 99.3%, 95.68%, and 99.5% peak absorption at 2.4, 3.5,	
and 5.85 GHz, respectively. Length variation of inwardly extended metallic stubs	
attached to the innermost ring provides frequency tuning flexibility for peak absorption	
within 5.67 GHz–5.98 GHz. The absorption process of the MMA is analyzed through	
the distribution of surface current. The MMA exhibits incident and polarization angle	
insensitive behaviour up to 60° for both TE and TM modes with near zero polarization	
conversion ratio. The resonance characteristics are justified through equivalent circuit	
modelling with validation by Advanced Design software (ADS). The measured	
absorption indicates a close resemblance with the simulation. Moreover, a good	
effective medium ratio of 6.25 shows the compactness of MMA. Due to its compact	
structure, incident, and polarization angle insensitivity, and near unity absorption at	
application-specific frequencies, this perfect MMA can be suitable for WLAN and 5G	
applications, especially for microwave shielding and sensing.	

