

The Impact of Marangoni and Buoyancy Convections on Flow and Segregation Patterns	
during the Solidification of Fe-0.82 wt% C Steel	
Authors	Ibrahim Sari, Menghuai Wu, Mahmoud Ahmadein, Sabbah Ataya,
	Nashmi Alrasheedi, Abdellah Kharicha
Publication Year	2024
Grant Number	IMSIU- RP211202
DOI link	<u>10.3390/ma17051205</u>
Abstract: Due to the high computational costs of the Eulerian multiphase model, which solves	
the conservation equations for each considered phase, a two-phase mixture model is	
proposed to reduce these costs in the current study. Only one single equation for each the	
momentum and enthalpy equations has to be solved for the mixture phase. The Navier-	
Stokes and energy equations were solved using the 3D finite volume method. The model was	
used to simulate the liquid–solid phase transformation of a Fe-0.82wt%C steel alloy under the	
effect of both thermocapillary and buoyancy convections. The alloy was cooled in a	
rectangular ingot ($100 \times 100 \times 10$ mm3) from the bottom cold surface to the top hot free	
surface by applying a heat transfer coefficient of $h = 600 \text{ W/m2/K}$, which allows for heat	
exchange with the outer medium. The purpose of this work is to study the effect of the	
surface tension on the flow and segregation patterns. The results before solidification show	
that Marangoni flow was formed at the free surface of the molten alloy, extending into the	
liquid depth and creating polygonized hexagonal patterns. The size and the number of these	
hexagons were found to be dependent on the Marangoni number, where the number of	
convective cells increases with the increase in the Marangoni number. During solidification,	
the solid front grew in a concave morphology, as the centers of the cells were hotter; a	
macro-segregation pattern with hexagonal cells was formed, which was analogous to the	
hexagonal flow cells generated by the Marangoni effect. After full solidification, the	
segregation was found to be in perfect hexagonal shapes with a strong compositional	
variation at the free surface. This study illuminates the crucial role of surface-tension-driven	
Marangoni flow in producing hexagonal patterns before and during the solidification process	
and provides valuable insights into the complex interplay between the Marangoni flow,	
buoyancy convection, and solidification phenomena.	

ه-خوجه

