

Experimental Study of the Tensile Behavior of Structures Obtained by FDM 3D Printing	
Process	
Authors	Salem Ben hadj Hassine, Sami Chatti, Borhen Louhichi, Abdennour Seibi
Publication Year	2024
Grant Number	IMSIU-RP23018
DOI link	<u>10.3390/polym16111562</u>
Abstract: Fused Deposition Modelling (FDM) is one of the layer-based technologies that fall	
under the umbrella term "Additive Manufacturing", where the desired part is created through	
the successive layer-by-layer addition process with high accuracy using computer-aided	
design data. Additive manufacturing technology, or as it is commonly known, 3D (three-	
dimensional) printing, is a rapidly growing sector of manufacturing that is incorporated in	
automotive, aerospace, biomedical, and many other fields. This work explores the impact of	
the Additive Manufacturing process on the mechanical proprieties of the fabricated part. To	
conduct this study, the 3D printed tensile specimens are designed according to the ASTM	
D638 standards and printed from a digital template file using the FDM 3D printer Raise3D N2.	
The material chosen for this 3D printing parameter optimization is Polylactic acid (PLA). The	
FDM process parameters that were studied in this work are the infill pattern, the infill density,	
and the infill cell orientation. These factors' effects on the tensile behavior of printed parts	
were analyzed by the design of experiments method, using the statistical software	
MINITAB2020.	

ه-خوجه