

Numerical simulation of chemically reacting Darcy-Forchheimer flow of Buongiorno		
Maxwell fluid with Arrhenius energy in the appearance of nanoparticles		
Authors	Muhammad Jawad, Afraz Hussain Majeed, Kottakkaran Sooppy Nisar,	
	Mohamed Bechir Ben Hamida, Abdulaziz Alasiri, Ahmed M Hassan,	
	Hasan Shahzad, Sayed M Eldin, Swellam W Sharshir	
Publication Year	2024	
Grant Number	IMSIU-RP23056	
DOI link	<u>10.1016/j.csite.2023.103413</u>	
Abstract: Due to the abundant applications in engineering and industrial trade unit, boundary		
layer issues related to extending surfaces have attracted significant interest in recent years. A		
crucial idea in physics and fluid mechanics is the boundary layer, which is described as the		
layer of fluid in the vicinity of bounded area where viscosity effects are noticeable. Each base		
fluid has a set of essential characteristics that are crucial to its dynamics. The impacts of the		
final invention depend on the stretching and cooling speeds during the production process.		
The two dimension	al flow of an incompressible liquid within the boundary layer along the	
stretched sheet was initially described by Crane [
1		
]. Many researchers deliberated the stretched flow models in the occurrence of hydro		
magnetic and chemical diffusion effects. Al-Mudhaf et al. [
2		
] discussed the inspiration of heat generation on MHD chemical reactive marangoni		
convection flow with Similarity solutions. Kumaran et al. [
3		
] studied the Buongiorrio's fluid due to porous stretched surface. Magyari et al. [
4		
] investigated the exact solution for boundary layers Marangoni flow of MHD fluid through		
stretched sheet. Nanofluids are utilized in biological and engineering processes due to		
convalesce the thermal conductivity of the primary liquid. Convectional heat transfer's		
thermal conductivity is caused by the suspension of solid particles, which increased the heat		
transfer coefficient. Compared to liquids, solid metals conduct heat more effectively.		

Properties of the nanofluid surface in terms of stability, spreading, and dispersion [5]. They are used in transportation, nuclear reactors, cooling unit, fuel cell, industrial means

and many more

ه-خوجه

الإنتاج العلمي لمركز بحوث العلوم الهندسية

Performance improvement of a modified distiller with V-corrugated absorber and heat		
pump in different configurations: A thermoenviroeconomic assessment		
Authors	Swellam W Sharshir, Abdulaziz Alasiri, Abanob Joseph, Badr	
	Elshernoby, Murugesan Palaniappan, Mahmoud Ahmadein, Ammar H	
	Elsheikh	
Publication Year	2024	
Grant Number	IMSIU-RP23056	
DOI link	<u>10.1016/j.tsep.2023.102301</u>	
Abstract: More than two-thirds of the surface of the earth is covered by water. Only		
below 3 % of it is drinkable and primarily located in underground water and frozen		
rivers. Consequently, the presence of available freshwater is less than 1 %, leading to		
the world's biggest problem in the current era, as the world population increases,		
climate changes constantly, and rising temperatures reduce freshwater levels [1]. This		
led to the tendency of scientists and engineers to innovate and research to get		
freshwater by desalination of seawater and wastewater, where they came up with		
many ways to desalinate seawater [2]. Among these methods, reverse osmosis [3],		
[4], known with its water flux near 37.1 L/m2.h [3], humidification-dehumidification [5],		
[6], which can handle water with 3.5–81 % salinity and produce freshwater of salinity		
below 500 ppm, multi-stage flash (MSF) [7], [8], multi-stage flash system produces		
30.098 m3/day, freshwater recovery rate 57.544 % and gain output ratio 8.583 [8].		
Reaching solar stills (SSs), which are characterized by dependency only on solar		
energy, have a simple structure and lower cost [9]. They generally consist of metallic		
basins and transparent covers to allow solar radiation to pass through them to heat		
and evaporate seawater, then produce freshwater via condensing the generated		
vapor at the glass cover surface. Many SS-improved designs and modifications are		
scoping for a maximum freshwater output within high thermal efficiency and low price,		
such as [10], [11], [12], [13].		

ه-خوجه

عمادة البحث العلمي Deanship of Academic Research

Improvement of the performance of hemispherical distillers through passive and active		
techniques		
Authors	Abdulaziz Alasiri, Swellam W Sharshir, Lotfy A Lotfy, Mahmoud	
	Ahmadein, Ammar H Elsheikh	
Publication Year	2024	
Grant Number	IMSIU-RP23056	
DOI link	<u>10.1016/j.solener.2024.112409</u>	
Abstract: The primary goal of the present work is to compare the thermo-economic		
performance of modified hemispherical distillers by various types of enhancing		
materials. Three different cases of enhancing materials: (I) Copper oxide Nanofluid,		
(II) Copper chips, and (III) Copper oxide Nanofluids and copper chips sandwiched		
between wick material were tested. Each case was applied to the system without an		
external condenser (MHSS) and with an external condenser (MHSSC) and compared		
with a conventional one (CHSS). The outcomes were compared regarding system		
temperatures, hourly yield, daily productivity, thermal performance, and cost per liter		
of distilled water. According to the findings, the proposed modifications could augment		
the performance in the ranges of 25.4–79.11 % (productivity), 58.4–79.11 % (energy		
efficiency), and 7.85–167.42 % (exergy efficiency). Especially, Case III was the most		
enhanced case in terms of thermoeconomics and distillate water productivity. In this		
case. MHSSC exhibited a daily distillate water output and a thermal efficiency 79.11 %		
and 79,107 % better than CHSS, with values of 5.66 L/m2 and 56.15 %, respectively		
Additionally MHSS had the highest daily exergy efficiency at 2.38 % indicating a		
167 42 % improvement Moreover the cost of one liter of distillate water for the MHSS		
and MHSSC was about 0.029 /L with a cost reduction of 20.68 % compared to		
CHSS.		

ه-خوجه

