

Designing Lightweight 3D-Printable Bioinspired Structures for Enhanced Compression and	
Energy Absorption Properties	
Authors A	khil Harish, Naser A Alsaleh, Mahmoud Ahmadein, Abdullah A Elfar,
Jo	by Djuansjah, Hany Hassanin, Mahmoud Ahmed El-Sayed, Khamis Essa
Publication Year 20	024
Grant Number IN	/ISIU-RG23141
DOI link 10	0.3390/polym16060729
Abstract: Recent progress in additive manufacturing, also known as 3D printing, has offered	
several benefits, including high geometrical freedom and the ability to create bioinspired	
structures with intricate details. Mantis shrimp can scrape the shells of prey molluscs with its	
hammer-shaped stick, while beetles have highly adapted forewings that are lightweight,	
tough, and strong. This paper introduces a design approach for bioinspired lattice structures	
by mimicking the internal microstructures of a beetle's forewing, a mantis shrimp's shell, and	
a mantis shrimp's dactyl club, with improved mechanical properties. Finite element analysis	
(FEA) and experimental characterisation of 3D printed polylactic acid (PLA) samples with	
bioinspired structures were performed to determine their compression and impact	
properties. The results showed that designing a bioinspired lattice with unit cells parallel to	
the load direction improved quasi-static compressive performance, among other lattice	
structures. The gyroid honeycomb lattice design of the insect forewings and mantis shrimp	
dactyl clubs outperformed the gyroid honeycomb design of the mantis shrimp shell, with	
improvements in ultimate mechanical strength, Young's modulus, and drop weight impact.	
On the other hand, hybrid designs created by merging two different designs reduced bending	
deformation to control collapse during drop weight impact. This work holds promise for the	
development of bioinspired lattices employing designs with improved properties, which can	
have potential implications for lightweight high-performance applications.	

ه_خوجه

