

Tailoring 3D Star-Shaped Auxetic Structures for Enhanced Mechanical Performance	
Authors	Yulong Wang, Naser A Alsaleh, Joy Djuansjah, Hany Hassanin,
	Mahmoud Ahmed El-Sayed, Khamis Essa
Publication Year	2024
Grant Number	IMSIU-RP23141
DOI link	<u>10.3390/aerospace11060428</u>
Abstract: Auxetic lattice structures are three-dimensionally designed intricately	
repeating units with multifunctionality in three-dimensional space, especially with the	
emergence of additive manufacturing (AM) technologies. In aerospace applications,	
these structures have potential for use in high-performance lightweight components,	
contributing to enhanced efficiency. This paper investigates the design, numerical	
simulation, manufacturing, and testing of three-dimensional (3D) star-shaped lattice	
structures with tailored mechanical properties. Finite element analysis (FEA) was	
employed to examine the effect of a lattice unit's vertex angle and strut diameter on	
the lattice structure's Poisson's ratio and effective elastic modulus. The strut diameter	
was altered from 0.2 to 1 mm, while the star-shaped vertex angle was adjusted from	
15 to 90 degrees. Laser powder bed fusion (LPBF), an AM technique, was employed to experimentally fabricate 3D star-shaped honeycomb structures made of Ti6Al4V	
alloy, which were then subjected to compression testing to verify the modelling results.	
The effective elastic modulus was shown to decrease when increasing the vertex	
angle or decreasing the strut diameter, while the Poisson's ratio had a complex	
behaviour depending on the geometrical characteristics of the structure. By tailoring	
the unit vertex angle and strut diameter, the printed structures exhibited negative,	
zero, and positive Poisson's ratios, making them applicable across a wide range of	
aerospace components such as impact absorption systems, aircraft wings, fuselage	
sections, landing gear, and engine mounts. This optimization will support the growing	
demand for lightweight structures across the aerospace sector.	

www.imamu.edu.sa 💦 💥 ImamuDSR =

