

Synthesis and suitability characterization of microcrystalline cellulose from Citrus x sinensis	
sweet orange peel fruit waste-based biomass for polymer composite	
Authors	Murugesan Palaniappan, Sivasubramanian Palanisamy, Rashid Khan,
	Nashmi H. Alrasheedi, Srinivas Tadepalli, Thulasi mani Murugesan,
	Carlo Santulli
Publication Year	2024
Grant Number	IMSIU-RG23050
DOI link	<u>10.1007/s10965-024-03946-0</u>
Abstract: Presently, waste management is the primary focus of scientific inquiry. The	
recyclable and reusable organic waste are dumbed a lot as landfills in the environment and	
that could be converted into application-oriented polymer reinforcing material. Cellulose is a	
widespread biopolymer that is found in the majority of bio waste materials. The organic	
waste Citrus x sinensis peel (Citrus × aurantium f. aurantium) is used as a raw material in this	
research. The waste material was utilized to extract the cellulose using optimum chemical	
conditions such as alkali treatment, acid hydrolysis, and bleaching and purification process.	
Fourier transform spectroscopy was applied to the cellulose to detect the functional groups it	
contained and indicated progressive removal of non-cellulosic constituents. The cellulose that	
was extracted has a yield percentage of 67.82% and a density of 1.413 g/cm3. The differential	
scanning curve analysis reveals that the temperature of degradation is 308.17 °C. Through the	
utilisation of thermogravimetric analysis, each phase of thermal activity was studied.	
According to an X-ray diffraction investigation, cellulose has a crystalline size of 9.63 nm and a	
higher crystallinity index of 72.54 percent exhibiting unique physicochemical properties. The	
Scanning electron microscopy shows the different size and shape of particles oriented with	
rough surface. Using ImageJ software, the other distinguishing characteristics of surface	
morphology, and particle size analysis are performed. The elemental analysis demonstrates	
the cellulose's organic nature by demonstrating its higher carbon and oxygen content. On the	
basis of the physicochemical characteristics of the celluloses, it could be considered as	
alternative sources of cellulose for potential value-added industrial applications and more	
applicable for the polymer composite reinforcement filler material.	

ه_خوجه

