

SOMNet: Self-Optimizing mobility management for resilient 5G heterogeneous networks	
Authors	Abdulraqeb Alhammadi, Zool Hilmi Ismail, Ibraheem Shayea, Zaid
	Ahmed Shamsan, Majid Alsagabi, Sulaiman Al-Sowayan, Sawsan Ali
	Saad, Mohammad Alnakhli
Publication Year	2024
Grant Number	IMSIU-RG23042
DOI link	<u>10.1016/j.jestch.2024.101671</u>
Abstract: Effective mobility management in heterogeneous networks is significant in ensuring	
seamless handovers (HOs) between diverse cell types, especially as users move between	
macrocells, small cells, and femtocells. The widespread and overlapping deployment of	
diverse cells raises the HO probability occurrence massively, particularly when users are on	
the move and connected to multiple cells simultaneously to ensure uninterrupted	
connectivity. This phenomenon leads to an increase in HO ping pong (HOPP) and HO failure	
(HOF) occurrences, ultimately degrading network performance. In this context, this paper	
proposes a self-optimization algorithm to address the contradiction in the optimization tasks	
of mobility robustness optimization (MRO) and load balancing optimization (LBO) functions.	
The algorithm aims to facilitate seamless user communication as individuals move across	
various deployment scenarios. The MRO function leverages two key parameters: the	
reference signal received power (RSRP) levels of serving and target cells, as well as user	
movement speed. On the other hand, the LBO function takes into account the traffic load of	
serving and target cells to determine the suitable values of HO control parameters. Moreover,	
our research contributes to the present network optimization challenges and positions itself	
as an enabler for the seamless integration of emerging technologies. As the wireless	
ecosystem continues to evolve, with the advent of edge computing and network slicing	
technologies, our self-optimization algorithm offers adaptability and scalability to meet the	
evolving demands of next-generation wireless networks. This forward-looking solution	
benefits network operators and end-users by providing robust and efficient mobility	
management. The proposed algorithm demonstrates its effectiveness through comprehensive	
simulations by significantly reducing HOPP and HOF compared to investigated methods	
selected from the literature, showcasing its potential to enhance network performance and	
user experience.	

ه_خوجه

