

An Upper Bound Energy Formulation of Free-Chip Machining with Flat Chips and an Alternative Method of Determination of Cutting Forces without using Merchant's Circle	
Diagram	
Authors	Hillol Joardar, N. S. Das, BARUN HALDAR, K.P. Maity, Naser
	Abdulrahman Alsaleh, Sabbah Ataya
Publication Year	2024
Grant Number	IMSIU-RG23023
DOI link	10.3390/machines11090853
Abstract: An upper bound analysis of free-chip machining has been carried out, where the	
tool cutting and friction forces were determined from the deformation energy dissipated	
during the chip separation process. The method employed was based on the classical upper	
bound theorem, as formulated by Prager and Hodge, and Drucker, Prager, and Greenberg,	
and its modification by Collins, to deal with the metal forming processes involving coulomb	
friction. A straight shear plane and coulomb friction at the chip/tool interface were assumed	
and the energy required for cutting was calculated from a strain rate/velocity field that was	
constructed using the method proposed by Collins. Cutting forces, thrust forces, tool/chip	
contact lengths, and chip thickness ratios were determined for different tool rake angles and	
friction conditions. The theoretical results were also compared with some experimental	
results that are available in the published literature. The comparison between the two was	
not found to be satisfactory. This may be due to the non-unique nature of the machining	
process, as stated by Hill and demonstrated by other authors. The results calculated from the	
present method of "energy balance" were also found to be in agreement with those obtained	
by Merchant using the principle of "force balance".	

