

Effect of non-uniform heat rise/fall and porosity on MHD Williamson hybrid nanofluid flow	
over incessantly moving thin needle	
Authors	Fatih Selimefendigil, Bilel Hadrich, Karim Kriaa, Chemseddine Maatki,
	Lioua Kolsi
Publication Year	2024
Grant Number	
DOI link	<u>10.1007/s00419-024-02671-w</u>
Abstract: A novel cooling system for a hot elastic plate is considered by combined utilization	
of magnetic field, wavy channels and ternary nanofluid. Some applications can be found in	
electronic cooling, material processing and convective heat transfer control. The elastic object	
is placed between sinusoidal wavy channels where magnetic field of different strengths is	
imposed. Ternary nanofluid is used as cooling medium in both channels. Cooling performance	
assessment is made by various values of Reynolds number (Re, between 250 and 1000),	
Hartmann number of different channels (Ha, between 0 and 15), amplitude (A, between 0.05	
and 0.3) and wave number (N, between 1 and 4) of corrugation, and nanoparticle loading (svf	
between 0 and 0.03). Entropy generation analysis is also considered. Thermal performance	
enhancement factor for the maximum and lowest Re configurations in the rigid and elastic	
object cases are 1.70 and 1.65, respectively. The amount of cooling performance	
improvement generated by imposing magnetic field at the highest strength is 58.5% and 80%	
with rigid and elastic objects, respectively. The cooling performance is improved by the wavy	
form amplitude; however, the wave number relation is non-monotonic. When comparing the	
wavy channel with the flat one, the increments of thermal performance for stiff and elastic	
plates are 52% and 57%. Using elastic and stiff objects with nanofluid results in increases in	
cooling performance of 47.2% and 55.5% when compared to the use of base fluid alone. The	
best thermal performance is always provided by a rigid item with wavy channels. The least	
amount of cooling is achieved by using an elastic plate and flat channel. The best options are	
to increase the magnetic field strength and amplitude of the wavy channel as thermal	
performance improves and entropy generation drops.	

ه_خوجه

