

Performance assessment of up-flow anaerobic multi-staged reactor followed by autoaerated immobilized biomass unit for treating polyester wastewater, with biogas

production	
Authors	Raouf Hassan, Karim Kriaa, Amr M. Wahaballa, Mahmoud Essayed,
	M. Mahmoud, Mahmoud Nasr & Ahmed Tawfik
Publication Year	2024
Grant Number	IMSIU-2000651479
DOI link	<u>10.1007/s13201-024-02129-y</u>
Abstract: Polyester manufacturing industries produce highly polluted effluents,	
containing organics, nutrients, trace metals, and 1,4-dioxane, requiring a high degree	
of treatment before being discharged into the water bodies. This study focused on	
removing complex pollutants from a diluted polyester industrial effluent (DPIE) via a cost-efficient anaerobic/aerobic combined system, with biogas recovery. The	
integrated pilot-scale system was composed of an up-flow anaerobic multi-staged	
reactor (UASR; $V = 41 \text{ L}$) followed by an auto-aerated immobilized biomass (AIB;	
V _{sponge} = 9.54 L) unit and operated at a total organic loading rate (OLR) of 0.75 ± 0.16 g	
COD/L/d and pH of 7.14 ± 0.14 at 25 °C. The UASR achieved removal efficiencies of	
$17.82 \pm 3.14\%$ and $15.90 \pm 3.08\%$ for chemical oxygen demand (COD, total and	
soluble) and $15.83 \pm 4.68\%$ for total Kjeldahl nitrogen (TKN), with bio-CH ₄ yield of	
263.24 ± 31.98 mL/g COD. Adding the AIB unit improved the overall COD _{total} ,	
$COD_{soluble}$, and TKN to 93.94 ± 2.39%, 94.84 ± 2.23%, and 75.81 ± 3.66%, respectively. The NH ₄ -N removal efficiency was 85.66 ± 2.90% due to the oxic/nitrification condition	
on the sponge's outer surface. The entire system also achieved $73.26 \pm 2.68\%$,	
$77.48 \pm 5.74\%$, and $81.26 \pm 6.17\%$ removals for Fe (3.93 ± 0.95 ppm), Zn	
$(5.92 \pm 2.32 \text{ ppm})$, and 1,4 dioxane $(2.50 \pm 0.61 \text{ ppm})$. Moreover, the UASR-AIB	
maintained removal efficiencies of $76.53 \pm 8.47\%$ and $77.51 \pm 7.38\%$ for total	
suspended solids (TSS: 335.95 ± 42.84 mg/L) and volatile suspended solids (VSS:	
263.50 ± 36.94 mg/L). Regarding the DPIE toxicity level, the EC ₅₀ value increased	
from 12.9 to 39.4% after UASR/AIB application. The UASR's microbial community at	
the genus level demonstrated that the synergistic cooperation of solubilization,	
hydrolysis, acidogenesis, acetogenesis, and methanogenesis was responsible for the degradation of DPIE components.	

www.imamu.edu.sa

