

Digital Twin Implementation in Additive Manufacturing: A Comprehensive Review	
Authors	Sabrine Ben Amor, Nessrine Elloumi, Ameni Eltaief, Borhen Louhichi,
	Nashmi H Alrasheedi, Abdennour Seibi
Publication Year	2024
Grant Number	IMSIU-RP23018
DOI link	<u>10.3390/pr12061062</u>
Abstract: The additive manufacturing (AM) field is rapidly expanding, attracting significant	
scientific attention. This family of processes will be widely used in the evolution of Industry	
4.0, particularly in the production of customized components. However, as the complexity	
and variability of additive manufacturing processes increase, there is an increasing need for	
advanced techniques to ensure quality control, optimize performance, and reduce production	
costs. Multiple tests are required to optimize processing variables for specific equipment and	
processes, to achieve optimum processing conditions. The application of digital twins (DTs)	
has significantly enhanced the field of additive manufacturing. A digital twin, abbreviated as	
DT, refers to a computer-generated model that accurately depicts a real-world object, system,	
or process. A DT comprises the complete additive manufacturing process, from the initial	
conception phase to the final manufacturing phase. It enables the manufacturing process to	
be continuously monitored, studied, and optimized in real time. DT has emerged as an	
important tool in the additive manufacturing industry. They allow manufacturers to enhance	
the process, improve product quality, decrease costs, and accelerate innovation. However,	
the development of DT in AM is an iterative and continuous process. It requires collaboration	
between domain experts, data scientists, engineers, and manufacturing teams to guarantee	
an accurate representation of the process by the digital twin. This paper aims to provide a	
comprehensive analysis of the current state of DT for additive manufacturing, examining their	
applications, benefits, challenges, and future directions.	

ه-خوجه

