

Investigation on melting thermal resistance of PCMs applied in roof	
structures	
Authors	LMQ Nguyen, Mohamed Bechir Ben Hamida, Ahmad Hajjar,
	Mohsen Izadi, Mikhail A Sheremet
Publication Year	2024
Grant Number	IMSIU-RP23081
DOI link	<u>10.1016/j.tsep.2024.102649</u>
Abstract: Reducing energy losses from building walls can be an important part of energy	
resource management. Here, various structures of building roofs are investigated in order to	
find the best structure to reduce energy waste. Four different structures in which phase	
change materials (PCM) are tested and compared. The effect of various parameters, including	
Stefan and Rayleigh numbers, which depend on the difference between the inside and	
outside design temperature of the building, has been investigated. In order to study the	
problem, the Navier-Stokes equations, as well as the energy equation through the solid	
structure of the roof and the equations related to melting process and energy transport for	
phase change materials applied in the roof structure, have been solved. The outcomes mainly	
show that using one block of PCM in the roof structure leads to faster melting compared to	
multiple layers. A 200% increase in the melting speed is achieved when a single PCM block is	
located right above the hot boundary. Adding a hollow brick between the hot source and the	
PCM block leads to the highest thermal resistance. It is also shown that increasing Rayleigh	
and/or Stefan numbers enhances the heat transfer, PCM melting and melted PCM flow	
intensity. The melting speed increases 4 and 8 times on average when Stefan number is	
changed from 0.01 to 0.12, for Rayleigh number of 104 and 106, respectively. Also, for low	
Stefan number, the melting speed is almost 100% higher on average when Rayleigh number is	
raised from 104 to 106. the average Nusselt number can be doubled in the optimal	
configuration when Rayleigh number is increased from 104 to 106, for high Stefan number.	

ه-خوجه

