

Role of applying PCMs on thermal behavior of innovative unit roof enclosure	
Authors	Mohamed Bechir Ben Hamida, LMQ Nguyen, Ahmad Hajjar, Mohsen
	Izadi, Mikhail A Sheremet, Nashmi H Alrasheedi, Khalil Hajlaoui
Publication Year	2024
Grant Number	IMSIU-RP23081
DOI link	<u>10.1016/j.est.2023.109918</u>
Abstract: As a technical approach, using Phase Change Materials (PCM) can be an effective	
method to prevent energy losses through building enclosures. In the present paper, different	
roof structures containing PCM have been examined to analyze their thermal behavior. The	
governing equations were developed and solved for a sample unit extracted from a typical	
roof. The control volume based finite element method has been applied for solving coupled	
equations governing heat transfer through the roof and flow of melted PCM. The effect of key	
parameters including thermal diffusivity of the PCM and the wall, Prandtl number (Pr),	
Rayleigh number (Ra) and solid wall thickness to total thickness has been examined. The main	
results indicate an enhancement of heat transfer through the increase of the thermal	
diffusivity of the PCM with respect to the building material. Increasing the thermal diffusivity	
ratio from 1 to 25 doubles the heat transfer rate and decreases the full melting time by 80%	
for high Rayleigh. Pr affects the mode of heat transfer but has little impact on PCM melting	
rate. Raising Ra improves heat transfer under the condition of high thermal diffusivity in the	
PCM. Increasing Rayleigh number from 104 to 106 doubles the heat transfer rate and reduces	
the melting by 67% for high thermal diffusivity ratio. Finally, increasing the size of the wall	
thickness does not affect the fraction of melted PCM but reduces the heat transfer rate. The	
heat transfer rate can be increased by up to 75% when the non-dimensional thickness of the	
solid layer is reduced from 0.5 to 0.005.	

