

energy-efficient seawater desalination: towards energy-efficient solutions Authors Zakaria Triki, Zineb Fergani, Sabrina Lekmine, Hichem Tahraoui, Abdeltif Amrane, Meriem Zamouche, Mohammed Kebir, Amin Aymen Assadi, Lotfi Khezami, Jie Zhang Publication Year 2024 Grant Number IMSIU-RP23013 DOI link 10.3390/w15203612 Abstract: Vacuum membrane distillation (VMD) is a compelling technique for desalinating water because it exhibits superior pure water permeability at lower operating temperatures compared to other membrane distillation technologies. This leads to reduced energy consumption, lower heat loss via conduction across the membrane surface, and minimal heat transfer through conduction due to the low pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2-h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover,	Numerical modelling and performance evaluation of vacuum membrane distillation for	
Amrane, Meriem Zamouche, Mohammed Kebir, Amin Aymen Assadi, Lotfi Khezami, Jie ZhangPublication Year2024Grant NumberIMSIU-RP23013DOI link10.3390/w15203612Abstract: Vacuum membrane distillation (VMD) is a compelling technique for desalinating water because it exhibits superior pure water permeability at lower operating temperatures compared to other membrane distillation technologies. This leads to reduced energy consumption, lower heat loss via conduction across the membrane surface, and minimal heat transfer through conduction due to the low pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feect important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the coomposition and permeability of the sup		
Lotfi Khezami, Jie ZhangPublication Year2024Grant NumberIMSIU-RP23013DOI link10.3390/w15203612Abstract: Vacuum membrane distillation (VMD) is a compelling technique for desalinating water because it exhibits superior pure water permeability at lower operating temperatures compared to other membrane distillation technologies. This leads to reduced energy consumption, lower heat loss via conduction due to the low pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination. The numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2 h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction	Authors	
Publication Year 2024 Grant Number IMSIU-RP23013 DOI link 10.3390/w15203612 Abstract: Vacuum membrane distillation (VMD) is a compelling technique for desalinating water because it exhibits superior pure water permeability at lower operating temperatures compared to other membrane distillation technologies. This leads to reduced energy consumption, lower heat loss via conduction across the membrane surface, and minimal heat transfer through conduction due to the low pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support material		
Grant NumberIMSIU-RP23013DOI link10.3390/w15203612Abstract: Vacuum membrane distillation (VMD) is a compelling technique for desalinating water because it exhibits superior pure water permeability at lower operating temperatures compared to other membrane distillation technologies. This leads to reduced energy consumption, lower heat loss via conduction across the membrane surface, and minimal heat transfer through conduction due to the low pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2-h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature		Lotfi Khezami, Jie Zhang
DOI link10.3390/w15203612Abstract: Vacuum membrane distillation (VMD) is a compelling technique for desalinating water because it exhibits superior pure water permeability at lower operating temperatures compared to other membrane distillation technologies. This leads to reduced energy consumption, lower heat loss via conduction across the membrane surface, and minimal heat transfer through conduction due to the low pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2-h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the r	Publication Year	2024
Abstract: Vacuum membrane distillation (VMD) is a compelling technique for desalinating water because it exhibits superior pure water permeability at lower operating temperatures compared to other membrane distillation technologies. This leads to reduced energy consumption, lower heat loss via conduction across the membrane surface, and minimal heat transfer through conduction due to the low pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		IMSIU-RP23013
desalinating water because it exhibits superior pure water permeability at lower operating temperatures compared to other membrane distillation technologies. This leads to reduced energy consumption, lower heat loss via conduction across the membrane surface, and minimal heat transfer through conduction due to the low pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2 h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the	DOI link	<u>10.3390/w15203612</u>
operating temperatures compared to other membrane distillation technologies. This leads to reduced energy consumption, lower heat loss via conduction across the membrane surface, and minimal heat transfer through conduction due to the low pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
leads to reduced energy consumption, lower heat loss via conduction across the membrane surface, and minimal heat transfer through conduction due to the low pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
membrane surface, and minimal heat transfer through conduction due to the low pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
pressure on the permeate side. Detailed modelling of heat and mass transfer in VMD is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the	C i i ·	
is essential for optimizing the process as it provides valuable insights that contribute to the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the	5	
the advancement and successful implementation of seawater desalination using VMD technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
technology. The aim of this study is to establish a comprehensive numerical model that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
that describes the water vapor transfer across a hydrophobic micro-porous membrane in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
in single-stage and multi-stage VMD processes for seawater desalination. The numerical predictions were compared to experimental data in addition to numerical computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
computations based on an existing literature database, and good agreement has been found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
found. The investigation also conducted a sensitivity analysis of process variables and membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the	numerical predictions were compared to experimental data in addition to numerical	
membrane specifications on the VMD performance, as well as an assessment of the impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m2·h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
impact of temperature and concentration polarization. The obtained results showed that the permeation flux reached 18.42 kg/m ² h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
that the permeation flux reached 18.42 kg/m2 h at 35 g/L feed concentration, 65 °C feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
feed temperature, 50 L/h feed flow rate, and 3 kPa vacuum pressure. Moreover, the findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
findings revealed that the feed temperature was the most significant factor, while the feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
feed flow rate was the least important in determining the permeation flux. Additionally, the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
the findings suggested that the effectiveness of the VMD process heavily relies on the composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
composition and permeability of the support materials. Finally, the results confirmed that temperature polarization had a more significant effect on the reduction of the		
that temperature polarization had a more significant effect on the reduction of the		

