

CE 313 - Reinforced Concrete Design

Code and Name: CE 313 - Reinforced Concrete Design

Credit Hours: 3 (Lecture: 3, Tutorial: 1)

Textbook:

Reinforced Concrete – Mechanics and Design by J.K. Wight and J.G. MacGregor, 6th Ed., Pearson, 2012.

Other References:

Building Code Requirements for Structural Concrete (ACI 318M-11)

Design of reinforced concrete structures by M. Ghoneim

Course Description:

Study of the strength, behaviour, and design of reinforced concrete members (beams, short columns, one-way slab, footings etc.) and structural systems subjected to moments, shear, and axial forces; knowledge of code provisions for ultimate strength design, detailing and serviceability requirements; introduction to the use of design aids and computer design packages.

Pre-requisites: CE 311 (Structural Engineering), GE 301 (Numerical Methods in Engineering)

Co-requisites: CE 310 (Concrete Properties)

Course Learning Outcomes:

With relation to ABET Student Outcomes (From Fall 2019-SOs: 1-7)

- 1. Differentiate among different failure modes of Reinforced concrete (RC) structural elements, in order to avoid brittle collapse of RC buildings and save human lives (4)
- 2. Formulate the shear and flexural behavior of RC elements. (1)
- 3. Analyze the Capacity of RC structural elements (beams, columns, slabs and footings) (1)
- 4. Design reinforced concrete beams. (2)
- 5. Design reinforced concrete short columns. (2)
- 6. Design reinforced concrete slabs and spread footings (2)
- 7. Apply the design standards rationally (2)
- 8. Develop the computational tool to facilitate the design process. (2)

Topics to be covered:

- Introduction to reinforced concrete structures, common structural elements in buildings.
- Introduction to design codes and specifications, load combinations in design codes.
- Stresses in beam at different loading stages.
- Flexural behavior of beams at ultimate limit state and Serviceability limit states.
- Concept of tension and compression controlled section, design of singly reinforced section.
- Balanced reinforcement ratio, Analysis and design of doubly reinforced beam.
- Design of T& L sections, Design of continuous beam, design of beams for shear.
- Bar development and anchorage and Reinforcement detailing
- One way slabs and joist floors
- Design of axially loaded column
- Design of spread footing

Grading Policy:

The grading for the course is: 60% coursework and 40% Final Exam. The course work consists of two Midterm Exams, where each midterm exam is worth 20%. It also includes quizzes, and projects for the remaining 20% that is modified by the course instructor.

