

CE 423 - Traffic Engineering

Code and Name: CE 423 – Traffic Engineering Credit Hours: 3 (Lecture: 3, Tutorial: 1)

Textbook:

- Traffic Engineering by Roger P. Roess, Elena S, Prassas, William R. McShane, 4th Edition, 2011

Other References:

- Highway Capacity Manual (HCM2010) Transportation Research Board, National Research Council, Washington, D.C.
- Thomas R. Currin, Introduction to Traffic Engineering: A Manual for Data Collection and Analysis. Brooks/Cole, Thomson Learning.
- Nicholas J. Garber and Lester A. Hoel, Traffic and Highway Engineering (5th Edition). PWS Publishing.
- Course handouts: distributed on a regular basis to provide more information on the topic.

Course Description:

Elements of the road traffic system; traffic flow theory and road capacity analysis; theory and design for signalized intersections; principles and procedures in traffic impact analysis and traffic survey methods.

Pre-requisites: CE421 Transportation Facility Design

Co-requisites: None

Course Learning Outcomes:

With relation to ABET Student Outcomes (From Fall 2019-SOs: 1-7)

- 1. understand the fundamentals of traffic engineering (4).
- 2. learn both quantitative and computerized techniques for solving basic traffic engineering problems (1)
- 3. apply principles of traffic engineering to evaluate, analyze, and design timing plans for signalized intersections (6)
- 4. demonstrate the capability to write a technical report (3)
- 5. communicate the results of their solution approach to other engineering professionals (3)

Topics to be covered:

- Basic Concepts, Components of the Traffic System.
- Traffic Stream Characteristics, Fundamental Diagram.
- Traffic Data Collection, Volume Studies
- Speed, Travel Time, and Delay Studies.
- Basic Principle of Probability and Statistics.
- Statistics and Applications in Traffic Engineering.
- Basic Traffic Flow Theory, Shockwave Analysis
- Highway Capacity Analysis, Freeway Weaving Sections/Ramps
- Freeway Management and Control
- Introduction to Intersection Control
- Basic Principles of Intersection Signalization, Webster's Delay Model
- Introduction to Synchro/SimTraffic
- Fundamentals of Signal Design and Timing Phasing Concepts and Dilemma Zone
- Analysis of Signalized Intersections, Highway Capacity Manual
- Signal Coordination, Green bandwidth Concept, Development of Coordinated Timing Plan
- Actuated Signal Control, Actuated Signal Coordination Signal Timing parameters and Detector Placement

Grading Policy:

The grading for the course is: 60% coursework and 40% Final Exam. The course work consists of two Midterm Exams, where each midterm exam is worth 20%. It also includes quizzes, and homework for the remaining 20% that is modified by the course instructor.