الندوة العلمية الثالثة بقسم الفيزياء للفصل الثاني قدمها الأستاذ الدكتور محمد حنيني

نظمت اللجنة العلمية بقسم الفيزياء الندوة العلمية الثالثة لهذا العام الدراسي 1439/1440هـ، حيث كانت الندوة بعنوان:


Development of Advanced Semiconductor Materials and Devices
For Next Generation Photovoltaics: Opportunities And Challenges


قدم الندوة مشكور الأستاذ الدكتور محمد حنيني. كان ذلك يوم الثلاثاء 4 شعبان 1440هـ الموافق 9 ابريل 2019م. وذلك من الساعة 11 صباحاً ولمدة نصف ساعة. هذا وقد تلى الندوة مداخلات وأسئلة من الحضور.

بدأ مقدم الندوة اعطاء فكرة عن إنتاج الطاقة المتجددة حيث يعتبر مكونًا رئيسيًا في السعي نحو توفير إمدادات الطاقة الآمنة في المستقبل.

 ثم تطرق مقدم الندوة الى توفير استخدام الطاقة من الشمس كمصدرًا مستدامًا للطاقة المجانية والوفرة والآمنة والنظيفة ، دون استخدام أي أنواع الوقود الأحفوري ودون إهدار أو تلوث.  ولقد دار النقاش حول عدة نقاط شارك فيها عدد من أعضاء هيئة التدريس و الطلاب بالقسم،  ولقد شمل النقاش كيفية استخدام الموصلات لتحويل أشعة الشمس ذات الأطوال الموجية المحددة والطاقة إلى طاقة كهربائية.

تأتي هذه الندوة ضمن سلسلة ندوات نصف شهرية تنظمها اللجنة العلمية بقسم الفيزياء ويقدمها أعضاء هيئة التدريس بالقسم وباحثون من جهات بحثية أخرى، ويُشرف على سلسلة الندوات هذه رئيس اللجنة العلمية بالقسم د. عبدالعزيز الجميل، وينسقها ويديرها عضو اللجنة العلمية د. جابر الغول. تهدف هذه الندوات إلى تحفيز مناخ البحث العلمي بالقسم وإطلاع منسوبيه على آخر ما توصلت إليه العلوم الفيزيائية في شتى المجالات.

جدير بالذكر أن الحضور لهذه الندوات متاح لجميع منسوبي الجامعة من أعضاء هيئة تدريس وموظفين وطلاب.

للمزيد من المعلومات حول الندوة المقدمة يمكنكم الاطلاع على ملخص الندوة أدناه:

مع تحيات اللجنة العلمية بقسم الفيزياء.

---

Abstract:

Renewable energy production is a key component in the drive towards a safe, secure energy supply for future low-carbon economies. Using energy from the sun to generate electricity provides a sustainable source of free, abundant, safe, clean energy, without use of any fossil fuels and without waste or pollution.

Solar cells (photovoltaic cells) are made of semiconductor materials that convert energy from the sun directly into electrical energy. Sunlight consists of a spectrum of different wavelengths (colours) of light, each corresponding to a different energy level. Semiconductor materials can only convert sunlight of specific wavelengths and energy into electrical energy. Remaining energy from the sun is lost. Existing semiconductors cannot utilise the entire spectrum distribution of sunlight. The strategy to increase the efficiency of solar cells is to use semiconductors optimised for different wavelength ranges of the spectrum.

Existing 'three junction' solar cells, which utilise three different semiconductors, are capable of converting sunlight from three regions of the spectrum into electrical energy. The drawback is that state of the art solar cells currently only convert 33% of solar energy into electricity. There is a great interest worldwide into developing innovative semiconductor materials capable of converting sunlight from a fourth specific portion of the solar spectrum into electrical energy. Retrofitting this fourth generation material onto current solar cells should significantly improve solar cell efficiency to >60%.

Currently a wide range of semiconductors is explored for their potential use in photovoltaic applications. However, solar cells are already an important part of our lives. The simplest systems power many of the small calculators and wristwatches. The complicated systems provide electricity for pumping water, powering communications equipment, and even lighting our homes and running our appliances. With the growth of the satellite industry and the increase of power requirements, larger solar arrays are needed to produce the required power. The familiar wings of most modern satellites are made of solar arrays.

In this talk, I will give an overview of the principles of solar cells, the properties of semiconductors suitable for solar cells, and some selected recent achievements in III-V solar cells.


السيرة الذاتية لمقدم الندوة:

Mohamed Henini obtained his first degree at the University of Oran, Algeria. He went to Nottingham University and was awarded the PhD degree in 1984. Mohamed has over 25 years of experience in Molecular Beam Epitaxy (MBE) growth. His particular speciality is the physics and technology of MBE growth for III-V electronic and optoelectronic devices. He has authored and co-authored over 920 papers in international journals and conference proceedings. He has an h-index of 50.

He is the founder of two international conferences namely, Low Dimensional Structures and Devices (LDSD) and Epitaxial Semiconductors on Patterned Substrates and Novel Index Surfaces (ESPS-NIS). He edited six books which were published by Elsevier and serves on the Editorial Board of several scientific journals. He is Editor of Journal of Alloys and Compounds (Elsevier).

http://www.nottingham.ac.uk/~ppzmh/mywebsite/


الإثنين 10/08/1440 هـ 15/04/2019 م
التقييم:

شكرا على تقييمك
تاريخ أخر تحديث:
هل أعجبك محتوى الصفحة *
السبب
السبب
تاريخ أخر تحديث: