الدكتور محمد الأمين محمد علي عابدون يقدم ندوة بعنوان : First Integral Method for Nonlinear PDE

​​

أقيمت صباح أمس الثلاثاء الموافق 30 /12 /1436هـ ضمن فعاليات حلقات البحث العلمي "المتتابعة" لقسم الرياضيات والاحصاء - شعبة "الرياضيات التطبيقية" ندوة علمية قدمها  الدكتور  محمد الأمين محمد علي عابدون (القسم التحضيري) ​تحت عنوان:

​First Integral Method for Nonlinear PDE​

Abstract

 The first integral method is a powerful method for the computation of exact traveling wave solutions. This method is one of the most direct and effective algebraic method for finding exact solutions of nonlinear PDEs. The first method has many advantages including the avoidance of great deal of complicated and tedious calculations resulting in more exact and explicit traveling solitary solutions with high a accuracy.In the pioneer work [1,2], the first integral method for a reliable treatment of the nonlinear PDEs is introduced. Many of the well known PDEs can be reduced to a general form that can be easily solved using the first integral methods. Such PDEs include but not limited to the modified kdv equation, the medium equation (MEW), the negative order kdv equation, Duffing-Sokolv equation, nonlinear fractional Kellin-Gordon equation, etc​

References 

  1. Z.S. Feng, the first integral method to study the Burgers-Korteweg-devices equations, J. Phys. A., 35, 334-343, 2002
  2. Z.S. Feng, the first integral method to study the Burgers-Korteweg-devices equations, J. Phys. A., 35, 334-343, 200


لمزيد من محاضرات القسم ​السابقة: زيارة الرابط ​

الأربعاء 01/01/1437 هـ 14/10/2015 م
التقييم: