د.ايريك قدم سيمنار بعنوان: Spectral distribution in the eigenvalues sequence of product of g-Toeplitz structures

​​

تحت إشراف قسم الرياضيات والإحصاء وبالتعاون مع مركز البحوث بالكلية أقيم يوم الثلاثاء ٢٦ / ٥ / ١٤٤١هـ سيمنار بعنوان:
Title: Spectral distribution in the 
eigenvalues sequence of product of g-Toeplitz structures.


قدمه د.ايريك وذلك في تمام الساعة 9:10 ص في قاعة 2-31A .

ملخص البحث:​



​:Abstract 
"Starting from the definition of a g-Toeplitz matrix of size n denoted T_{n,g}(u), where g is a nonnegative integer and the entries of the matrix are the Fourier coefficients of the Lebesgue integrable function u, defined over the set T=(-\pi,\pi), we introduce the notion of products of g-Toeplitz sequences of matrices which extends the notion of products of Toeplitz structures in the case where the generating functions are bounded and their product is real-valued. Under suitable assumptions, the spectral distribution in the eigenvalues sequence is completely characterized for the products of g-Toeplitz structures. This extends the well-known result in the literature, due to S. Serra Capizzano, D. Sesana and E. Strouse, which concerns the product of Toeplitz matrices. Finally, a wide set of numerical experiments to this theoretical analysis is presented and critically discussed".





الخميس 05/06/1441 هـ 30/01/2020 م
التقييم: